首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We aim to give a pedagogical introduction to those elementary aspects of superconductivity which are not treated in the classic textbooks. In particular, we emphasize that global U (1) phase rotation symmetry, and not gauge symmetry, is spontaneously violated, and show that the BCS wave function is, contrary to claims in the literature, fully gauge invariant. We discuss the nature of the order parameter, the physical origin of the many degenerate states, and the relation between formulations of superconductivity with fixed particle numbers vs. well-defined phases. We motivate and to some extend derive the effective field theory at low temperatures, explore symmetries and conservation laws, and justify the classical nature of the theory. Most importantly, we show that the entire phenomenology of superconductivity essentially follows from the single assumption of a charged order parameter field. This phenomenology includes Anderson’s characteristic equations of superfluidity, electric and magnetic screening, the Bernoulli Hall effect, the balance of the Lorentz force, as well as the quantum effects, in which Planck’s constant manifests itself through the compactness of the U (1) phase field. The latter effects include flux quantization, phase slippage, and the Josephson effect.  相似文献   

2.
A relativistic one-particle, quantum theory for spin-zero particles is constructed uponL 2(x, ct), resulting in a positive definite spacetime probability density. A generalized Schrödinger equation having a Hermitian HamiltonianH onL 2(x, ct) for an arbitrary four-vector potential is derived. In this formalism the rest mass is an observable and a scalar particle is described by a wave packet that is a superposition of mass states. The requirements of macroscopic causality are shown to be satisfied by the most probable trajectory of a free tardyon and a nontrivial framework for charged and neutral particles is provided. The Klein paradox is resolved and a link to the free particle field operators of quantum field theory is established. A charged particle interacting with a static magnetic field is discussed as an example of the formalism.  相似文献   

3.
F. Reuse 《Foundations of Physics》1979,9(11-12):865-882
A canonical formalism for the relativistic classical mechanics of many particles is proposed. The evolution equations for a charged particle in an electromagnetic field are obtained and the relativistic two-body problem with an invariant interaction is treated. Along the same line a quantum formalism for the spinless relativistic particle is obtained by means of imprimitivity systems according to Mackey theory. A quantum formalism for the spin-1/2 particle is constructed and a new definition of spin1/2 in relativity is proposed. An evolution equation for the spin-1/2 particle in an external electromagnetic field is given. The Bargmann Michel, and Telegdi equation follows from this formalism as a quasiclassical approximation. Finally, a new relativistic model for hydrogenlike atoms is proposed. The spectrum predicted is in agreement with Dirac's when radiative corrections have been added.  相似文献   

4.
Two new ponderomotive effects in black hole physics are indicated: (i) the precession of the rotation axis of a charged black hole in an external magnetic field, (ii) the drift of a non-charged rotating hole in an asymmetric homogeneous electromagnetic field posessing a non-zero Poynting vector. The precession time for a black hole of solar mass with Q = 10?5M in a magnetic field B ~ 1012G is about a year.  相似文献   

5.
A coupling electromagnetism with a previously developed scalar theory of gravitation is presented. The principle features of this coupling are: (1) a slight alteration to the Maxwell equations, (2) the motion of a charged particle satisfies an equation with the Lorentz force-appearing on the right side in place of zero, and (3) the energy density of the electromagnetic field appears in the gravitational field equation in a manner similar to the mass term in the Klein-Gordonequation. The field of a static, spherically symmetric charged particle is computed. The electromagnetic field gives rise to l/r 2 terms in the gravitational potential.  相似文献   

6.
New gauges are introduced. The potentials, vector and scalar, in these gauges are obtained in closed forms by the Green's function method. These closed form solutions are explicity expressed only in terms of the charge and current densities. The physical interpretation is on how potentials propagate from the charge and current densities. The Coulomb gauge and the Lorentz gauge are special cases of a new gauge defined in this paper. It is called the complete α-Lorentz gauge. The scalar potential propagates at speed αc from the charge density for any positive α. When α is one, the usual solutions for the Lorentz gauge are recovered. When α is not one, our results show that, in order to satisfy the requirement that electromagnetic fields be gauge invariant and in order to conform to Maxwell's interpretation that electromagnetic fields propagate at speed c from the charge and current densities (we only consider the vacuum), the vector potential must contain two mathematically and physically independent gradient components. Furthermore, one such component must propagate at speed αc while the other must at speed c from charge and current densities. Our discussions on the Coulomb gauge are based on the results obtained by letting α go to (positive) infinity. Guided by Maxwell's interpretation, we introduce a new decomposition of the vector potential in the Lorentz gauge into a longitudinal and a transverse component. For an arbitrary charge and current distribution, it is shown that the transverse component will generate all the fields only in the radiation zone. However, for a point charged particle, the transverse component only generates the “free fields”everywhere in the instantaneous rest frame of the charged particle.  相似文献   

7.
A theoretical study of nematic liquid crystal filled photonic crystal fibers (LCPCFs) is presented. Detailed investigations including the polarization dependent bandgap formation and the modal properties are given for LCPCFs, in which alignment of the molecules could be controlled by external static electric field. The polarization dependent bandgap splitting caused by the high index difference between the ordinary and the extraordinary dielectric index of nematic liquid crystals provides the possibility of single-mode single-polarization guiding. A polarization operation diagram is proposed to describe the guiding behavior of LCPCFs. The influence of rotation angle ? of the director of liquid crystals on the modal properties is investigated. It is shown that the polarization axis of the guided mode is determined by the rotation angle ?, which could be controlled by external electric field.  相似文献   

8.
正弦平方势与小振幅近似下的弯晶沟道辐射   总被引:1,自引:0,他引:1       下载免费PDF全文
在理想情况下和经典力学框架内,引入正弦平方势,把粒子在弯晶中的运动方程化为具有外力矩的摆方程。并对系统的相平面特征进行了数值分析。在小振幅近似下,把粒子运动方程化为具有硬特性的弹簧-振子系统,用Jacobian椭圆函数和椭圆积分解析地给出系统的解和粒子运动周期。讨论了弯晶沟道辐射频率、无量纲偏转角和辐射谱的一般特征。指出利用沟道辐射作为激光的可能性。以正电子在碳单晶中沟道辐射为例进行了具体计算,得到了与其他工作基本一致的结果。  相似文献   

9.
We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δδ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δδ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string.  相似文献   

10.
The charged vector ρ mesons in the presence of external magnetic fields at finite temperature T and chemical potential μ have been investigated in the framework of the Nambu-Jona-Lasinio model.We compute the masses of charged ρ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential.The self-energy of the ρ meson contains the quark-loop contribution,i.e.the leading order contribution in 1/N_C expansion.The charged ρ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field eB_c,which indicates that the charged vector meson condensation,i.e.the electromagnetic superconductor can be induced above the critical magnetic field.Surprisingly,it is found that the charged ρ condensation can even survive at high temperature and density.At zero temperature,the critical magnetic field just increases slightly with the chemical potential,which indicates that charged ρ condensation might occur inside compact stars.At zero density,in the temperature range 0.2 — 0.5 GeV,the critical magnetic field for charged ρ condensation is in the range of 0.2 — 0.6 GeV~2,which indicates that a high temperature electromagnetic superconductor might be created at LHC.  相似文献   

11.
We consider the problem of sound propagation in a wind. We note that the rays, as in the absence of a wind, are given by Fermat’s principle and show how to map them to the trajectories of a charged particle moving in a magnetic field on a curved space. For the specific case of sound propagating in a stratified atmosphere with a small wind speed, we show that the corresponding particle moves in a constant magnetic field on the hyperbolic plane. In this way, we give a simple ‘straightedge and compass’ method to estimate the intensity of sound upwind and downwind. We construct Mach envelopes for moving sources. Finally, we relate the problem to that of finding null geodesics in a squashed anti-de Sitter spacetime and discuss the SO(3,1)×R symmetry of the problem from this point of view.  相似文献   

12.
A classical particle in a constant magnetic field undergoes cyclotron motion on a circular orbit. At the quantum level, the fact that all classical orbits are closed gives rise to degeneracies in the spectrum. It is well-known that the spectrum of a charged particle in a constant magnetic field consists of infinitely degenerate Landau levels. Just as for the 1/r and r2 potentials, one thus expects some hidden accidental symmetry, in this case with infinite-dimensional representations. Indeed, the position of the center of the cyclotron circle plays the role of a Runge-Lenz vector. After identifying the corresponding accidental symmetry algebra, we re-analyze the system in a finite periodic volume. Interestingly, similar to the quantum mechanical breaking of CP invariance due to the θ-vacuum angle in non-Abelian gauge theories, quantum effects due to two self-adjoint extension parameters θx and θy explicitly break the continuous translation invariance of the classical theory. This reduces the symmetry to a discrete magnetic translation group and leads to finite degeneracy. Similar to a particle moving on a cone, a particle in a constant magnetic field shows a very peculiar realization of accidental symmetry in quantum mechanics.  相似文献   

13.
We address the problem of inertial property of matter through analysis of the motion of an extended charged particle. Our approach is based on the continuity equation for momentum (Newton’s second law) taking due account of the vector potential and its convective derivative. We obtain a development in terms of retarded potentials allowing an intuitive physical interpretation of its main terms. The inertial property of matter is then discussed in terms of a kind of induction law related to the extended charged particle’s own vector potential. Moreover, it is obtained a force term that represents a drag force acting on the charged particle when in motion relatively to its own vector potential field lines. The time rate of variation of the particle’s vector potential leads to the acceleration inertia reaction force, equivalent to the Schott term responsible for the source of the radiation field. We also show that the velocity dependent term of the particle’s vector potential is connected with the relativistic increase of mass with velocity and generates a longitudinal stress force that is the source of electric field lines deformation. In the framework of classical electrodynamics, we have shown that the electron mass has possibly a complete electromagnetic origin and the obtained covariant equation solves the “4/3 mass paradox” for a spherical charge distribution.  相似文献   

14.
经典物理学指出,在电磁场中作加速运动的带电粒子将不断向外辐射能量.在晶体沟道中运动的带电粒子也不例外,晶格场可以使带电粒子的辐射能量达到很高.对于10MeV的正电子,辐射能量可达keV量级.粒子在沟道中的运动行为决定于粒子晶体的相互作用势,常用的相互作用势有Lindhard势、Moliere势和正弦平方势.由于粒子在沟道中的运动行为十分类似于震荡器中运动的自由电子,可望把沟道辐射改造为Χ射线激光或γ射线激光.从Lindhard势出发,将其展开到四次项,在经典力学框架内,粒子的运动方程可以化为含立方项的二阶非线性微分方程,并利用Jacobian椭圆函数和第一类全椭圆积分解析地表示了系统的解和粒子运动周期,导出了正电子面沟道辐射的瞬时辐射强度、平均辐射强度和最大辐射频率,指出了利用沟道辐射作为γ激光的可能性.  相似文献   

15.
The diffraction process of a particle by a thin rigid crystal is considered. An integral equation is derived for the particle wave function φ which is quite suitable to obtain physical and mathematical properties. A class of potentials is presented for which the integral equation can be solved by means of the Fredholm theory. The convergence of the Born series for φ is studied, as well as the existence and convergence properties of the transmission and reflection amplitudes T±. Results are given about φ and T±: (i) at high energies, (ii) at those special energies such that new diffracted beams appear, and (iii) at glancing incidence on the crystal. Analyticity properties of T± as functions of the energy are derived and analytic representations for them are presented. The diffraction process when the particle is being simultaneously accelerated by a uniform electric field is also considered. Finally, the generalization to the case of an imperfect thin crystal is treated.  相似文献   

16.
Based on our previous work on the differential geometry for the closed string double field theory, we construct a Yang-Mills action which is covariant under O(D,D) T-duality rotation and invariant under three-types of gauge transformations: non-Abelian Yang-Mills, diffeomorphism and one-form gauge symmetries. In double field formulation, in a manifestly covariant manner our action couples a single O(D,D) vector potential to the closed string double field theory. In terms of undoubled component fields, it couples a usual Yang-Mills gauge field to an additional one-form field and also to the closed string background fields which consist of a dilaton, graviton and a two-form gauge field. Our resulting action resembles a twisted Yang-Mills action.  相似文献   

17.
In this paper, we have investigated the approach to saturation in both Co and Fe single crystals by taking into account the field energy and the magnetocrystalline anisotropy energy and numerically solving the nonlinear equations for equilibrium. And by introducing a new approximation rather than Akulov’s approximation, more accurate, approximate analytical solutions for the nonlinear equations for the field above the magnetocrystalline field have been obtained, which are in good agreement with the numerical results. It has been found that the crystal can reach the saturation as it is magnetized by a field along the easy or hard directions while it will follow the law of approach to saturation by the field applied along the non-easy or non-hard directions. The reason is that depending on the applied field angle the magnetocrystalline anisotropy can make the crystal hard or easy to be magnetized. No paramagnetism-like process occurs, and the a/H, b/H2 and χH terms all originate from the magnetocrystalline anisotropy. With the application of our theory to real ferromagnetic materials, the experimental observations can be understood.  相似文献   

18.
19.
We study gravity interacting with a special kind of QCD-inspired nonlinear gauge field system which earlier was shown to yield confinement-type effective potential (the “Cornell potential”) between charged fermions (“quarks”) in flat space-time. We find new static spherically symmetric solutions generalizing the usual Reissner-Nordström-de Sitter and Reissner-Nordström-anti-de Sitter black holes with the following additional properties: (i) appearance of a constant radial electric field (in addition to the Coulomb one); (ii) novel mechanism of dynamical generation of cosmological constant through the non-Maxwell gauge field dynamics; (iii) appearance of confining-type effective potential in charged test particle dynamics in the above black hole backgrounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号