首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper,we consider the following chemotaxis model with ratio-dependent logistic reaction term u/t=D▽(▽u-u▽ω/ω)+u(α-bu/ω),(x,t)∈QT,ω/t=βu-δω,(x,t)∈QT,u▽㏑(u/w)·=0,x ∈Ω,0tT,u(x,0)=u0(x)0,x ∈,w(x,0)=w0(x)0,x ∈,It is shown that the solution to the problem exists globally if b+β≥0 and will blow up or quench if b+β0 by means of function transformation and comparison method.Various asymptotic behavior related to different coefficients and initial data is also discussed.  相似文献   

2.
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space \(\dot B_{\infty ,\infty }^{ - r}\left( {{\mathbb{R}^2}} \right)\). The result shows that if θ is a weak solutions satisfies
$$\int_0^T {\frac{{\left\| {\nabla \theta ( \cdot ,s)} \right\|_{\dot B_{\infty ,\infty }^{ - r} }^{\tfrac{\alpha }{{\alpha - r}}} }}{{1 + \ln \left( {e + \left\| {\nabla ^ \bot \theta ( \cdot ,s)} \right\|_{L^{\tfrac{2}{r}} } } \right)!}}ds < \infty for some 0 < r < \alpha and 0 < \alpha < 1,}$$
then θ is regular at t = T. In view of the embedding \({L^{\frac{2}{r}}} \subset M_{\frac{2}{r}}^p \subset \dot B_{\infty ,\infty }^{ - r}\) with \(2 \leqslant p < \frac{2}{r}\) and 0 ≤ r < 1, we see that our result extends the results due to [20] and [31].
  相似文献   

3.
In this paper, we study the Pohozaev identity associated with a Henon-Lane-Emden system involving the fractional Laplacian:■in a star-shaped and bounded domain Ω for s ∈(0,1). As an application of our identity, we deduce the nonexistence of positive solutions in the critical and supercritical cases.  相似文献   

4.
We study existence and multiplicity of homoclinic type solutions to the following system of diffusion equations on \mathbbR ×W{\mathbb{R}} \times \Omega :
$ \left\{ {{*{20}c} {\,\,{\partial}_t u - {\Delta}_x u + b(t,x) \cdot {\nabla}_x u + V(x)u = H_v (t,x,u,v),} \\ { - {\partial}_t v - {\Delta}_x v - b(t,x) \cdot {\nabla}_x v + V(x)v = H_u (t,x,u,v),}\\ } \right. $ \left\{ {\begin{array}{*{20}c} {\,\,{\partial}_t u - {\Delta}_x u + b(t,x) \cdot {\nabla}_x u + V(x)u = H_v (t,x,u,v),} \\ { - {\partial}_t v - {\Delta}_x v - b(t,x) \cdot {\nabla}_x v + V(x)v = H_u (t,x,u,v),}\\ \end{array} } \right.   相似文献   

5.
The singular boundary-value problem
$ \left\{ {\begin{array}{*{20}{c}} {{u^{\prime\prime}} + g\left( {t,u,{u^{\prime}}} \right) = 0\quad {\text{for}}\quad t \in \left( {0,1} \right),} \hfill \\ {u(0) = u(1) = 0} \hfill \\ \end{array} } \right. $
is studied. The singularity may appear at u?=?0, and the function g may change sign. An existence theorem for solutions to the above boundary-value problem is proposed, and it is proved via the method of upper and lower solutions.
  相似文献   

6.
Let Ω ? ? n , n ? 2, be a bounded connected domain of the class C 1,θ for some θ ∈ (0, 1]. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem $$\begin{gathered} u \in W^1 L^\Phi \left( \Omega \right), - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}} {{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u} {{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega , \hfill \\ \frac{{\partial u}} {{\partial n}} = 0 on \partial \Omega , \hfill \\ \end{gathered}$$ where Φ is a Young function such that the space W 1 L Φ(Ω) is embedded into exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V (x) is a continuous potential, h ∈ (L Φ(Ω))* is a nontrivial continuous function, µ ? 0 is a small parameter and n denotes the outward unit normal to ?Ω.  相似文献   

7.
Let \(\Omega \) be a bounded domain in a n-dimensional Euclidean space \(\mathbb {R}^{n}\). We study eigenvalues of an eigenvalue problem of a system of elliptic equations of the drifting Laplacian
$$\begin{aligned} \left\{ \begin{array}{ll} \mathbb {L_{\phi }}\mathbf{{u}} + \alpha (\nabla (\mathrm {div}{} \mathbf{{u}}) - \nabla \phi \mathrm {div}{} \mathbf{{u}})= -\bar{\sigma }\mathbf{{u}}, &{} \hbox {in} \,\Omega ; \\ \mathbf{{u}}|_{\,\partial \Omega }=0. \end{array} \right. \end{aligned}$$
Estimates for eigenvalues of the above eigenvalue problem are obtained. Furthermore, a universal inequality for lower order eigenvalues of the problem is also derived. Finally, we prove an universal inequality type Ashbaugh and Benguria for the drifting Laplacian on Riemannian manifold immersed in an unit sphere or a projective space.
  相似文献   

8.
The authors study the following Dirichlet problem of a system involving fractional (p, q)-Laplacian operators:
$$\left\{ {\begin{array}{*{20}{c}} {\left( { - \Delta } \right)_p^su = \lambda a\left( x \right){{\left| u \right|}^{p - 2}}u + \lambda b\left( x \right){{\left| u \right|}^{\alpha - 2}}{{\left| v \right|}^\beta }u + \frac{{\mu \left( x \right)}}{{\alpha \delta }}{{\left| u \right|}^{\gamma - 2}}{{\left| v \right|}^\delta }uin\Omega ,} \\ {\left( { - \Delta } \right)_q^sv = \lambda c\left( x \right){{\left| v \right|}^{q - 2}}v + \lambda b\left( x \right){{\left| u \right|}^\alpha }{{\left| v \right|}^{\beta - 2}}v + \frac{{\mu \left( x \right)}}{{\beta \gamma }}{{\left| u \right|}^\gamma }{{\left| v \right|}^{\delta - 2}}vin\Omega ,} \\ {u = v = 0on{\mathbb{R}^N}\backslash \Omega ,} \end{array}} \right.$$
where λ > 0 is a real parameter, Ω is a bounded domain in R N , with boundary ?Ω Lipschitz continuous, s ∈ (0, 1), 1 < pq < ∞, sq < N, while (?Δ) p s u is the fractional p-Laplacian operator of u and, similarly, (?Δ) q s v is the fractional q-Laplacian operator of v. Since possibly pq, the classical definitions of the Nehari manifold for systems and of the Fibering mapping are not suitable. In this paper, the authors modify these definitions to solve the Dirichlet problem above. Then, by virtue of the properties of the first eigenvalue λ1 for a related system, they prove that there exists a positive solution for the problem when λ < λ1 by the modified definitions. Moreover, the authors obtain the bifurcation property when λ → λ1-. Finally, thanks to the Picone identity, a nonexistence result is also obtained when λ ≥ λ1.
  相似文献   

9.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

10.
In this paper, we study the global scattering result of the solution for the generalized Davey–Stewartson system(i?_tu + Δu = |u|~2u + uv_(x1),(t, x) ∈ R × R~3,-Δv =(|u|~2)_(x1).)The main difficulties are the failure of the interaction Morawetz estimate and the asymmetrical structure of nonlinearity(in particular, the nonlinearity is non-local). To compensate, we utilize the strategy derived from concentration-compactness idea, which was first introduced by Kenig and Merle [Invent.Math., 166, 645–675(2006)].  相似文献   

11.
In this paper, we mainly consider the initial boundary problem for a quasilinear parabolic equation u_t-div(|?u|~(p-2)?u) =-|u|~(β-1) u + α|u|~(q-2 )u,where p 1, β 0, q≥1 and α 0. By using Gagliardo-Nirenberg type inequality, the energy method and comparison principle, the phenomena of blowup and extinction are classified completely in the different ranges of reaction exponents.  相似文献   

12.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

13.
We consider an abstract system of Timoshenko type
$$\begin{aligned} \left\{ {\begin{array}{l} \rho_1{{\ddot \varphi}} + a A^{\frac12}(A^{\frac12}\varphi + \psi) =0\\\rho_2{{\ddot \psi}} + b A \psi + a (A^{\frac12}\varphi + \psi) -\delta A^\gamma {\theta} = 0\\\rho_3{{\dot \theta}} + c A\theta + \delta A^\gamma {{\dot \psi}} =0 \end{array}} \right. \end{aligned}$$
where the operator \({A}\) is strictly positive selfadjoint. For any fixed \({\gamma \in {\mathbb{R}}}\), the stability properties of the related solution semigroup \({S(t)}\) are discussed. In particular, a general technique is introduced in order to prove the lack of exponential decay of \({S(t)}\) when the spectrum of the leading operator \({A}\) does not consist of eigenvalues only.
  相似文献   

14.
In this note, we prove some results of Hua in short intervals. For example, each sufficiently large integer N satisfying some congruence conditions can be written as
$ \left\{ {\begin{array}{*{20}{c}} {N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + {p^k}}, \hfill \\ {\left| {{p_j} - \sqrt {N/5} } \right| \leqslant U,\left| {p - {{\left( {N/5} \right)}^{\tfrac{1}{k}}}} \right|\leqslant UN - \tfrac{1}{2} + \tfrac{1}{k},j = 1,2,3,4,} \hfill \\ \end{array} } \right. $
where \( U = N\tfrac{1}{2} - \eta + \varepsilon \) with \( \eta = \frac{2}{{\kappa \left( {K + 1} \right)\left( {{K^2} + 2} \right)}} \) and \( K = {2^{k - 1}},k\geqslant 3. \)
  相似文献   

15.
In this work, we are mainly concerned with the existence of positive solutions for the fractional boundary-value problem $$ \left\{ {\begin{array}{*{20}{c}} {D_{0+}^{\alpha }D_{0+}^{\alpha }u=f\left( {t,u,{u}^{\prime},-D_{0+}^{\alpha }u} \right),\quad t\in \left[ {0,1} \right],} \hfill \\ {u(0)={u}^{\prime}(0)={u}^{\prime}(1)=D_{0+}^{\alpha }u(0)=D_{0+}^{{\alpha +1}}u(0)=D_{0+}^{{\alpha +1}}u(1)=0.} \hfill \\ \end{array}} \right. $$ Here ?? ?? (2, 3] is a real number, $ D_{0+}^{\alpha } $ is the standard Riemann?CLiouville fractional derivative of order ??. By virtue of some inequalities associated with the fractional Green function for the above problem, without the assumption of the nonnegativity of f, we utilize the Krasnoselskii?CZabreiko fixed-point theorem to establish our main results. The interesting point lies in the fact that the nonlinear term is allowed to depend on u, u??, and $ -D_{0+}^{\alpha } $ .  相似文献   

16.
In this note we consider Wente's type inequality on the Lorentz-Sobolev space.If▽f∈L~p1,q1(R~n),G ∈ L~(p2,q2)(R~n) and div G≡0 in the sense of distribution where(1/p1)+(1/P2)=(1/q1)+(1/q2)=1,1P1,P2∞,it is known that G·▽f belongs to the Hardy space H~1 and furthermore‖G·▽f‖H~1≤C‖▽f‖L~(p1,q1)(R~2)‖G‖L~(p2,q2)(R~2).Reader can see[9]Section 4.Here we give a new proof of this result.Our proof depends on an estimate of a maximal operator on the Lorentz space which is of some independent interest.Finally,we use this inequality to get a generalisation of Bethuel's inequality.  相似文献   

17.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

18.
In this paper, we study the existence of positive solutions to the following Schr¨odinger system:{-?u + V_1(x)u = μ_1(x)u~3+ β(x)v~2u, x ∈R~N,-?v + V_2(x)v = μ_2(x)v~3+ β(x)u~2v, x ∈R~N,u, v ∈H~1(R~N),where N = 1, 2, 3; V_1(x) and V_2(x) are positive and continuous, but may not be well-shaped; and μ_1(x), μ_2(x)and β(x) are continuous, but may not be positive or anti-well-shaped. We prove that the system has a positive solution when the coefficients Vi(x), μ_i(x)(i = 1, 2) and β(x) satisfy some additional conditions.  相似文献   

19.
In this paper, we study the existence of multiple solutions for the boundary-value problem
$${\Delta _\gamma }u + f\left( {x,u} \right) = 0in\Omega ,u = 0on\partial \Omega ,$$
where Ω is a bounded domain with smooth boundary in R N (N ≥ 2) and Δ γ is the subelliptic operator of the type
$${\Delta _\gamma }u = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}u} \right)} ,{\partial _{{x_j}}}u = \frac{{\partial u}}{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \ldots ,{\gamma _N}} \right).$$
We use the three critical point theorem.
  相似文献   

20.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号