首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss dynamics of a slow quantum phase transition in a spin-1 Bose-Einstein condensate. We analytically determine the scaling properties of the system magnetization and verify them with numerical simulations in a one dimensional model.  相似文献   

2.
We have experimentally observed the dynamics of an antiferromagnetic sodium Bose-Einstein condensate quenched through a quantum phase transition. Using an off-resonant microwave field coupling the F = 1 and F = 2 atomic hyperfine levels, we rapidly switched the quadratic energy shift q from positive to negative values. At q = 0, the system undergoes a transition from a polar to antiferromagnetic phase. We measured the dynamical evolution of the population in the F = 1, mF = 0 state in the vicinity of this transition point and observed a mixed state of all 3 hyperfine components for q < 0. We also observed the coarsening dynamics of the instability for q < 0, as it nucleated small domains that grew to the axial size of the cloud.  相似文献   

3.
We show that the quantum Loschmidt echo can be employed to characterize the dynamical phase transition, from a tunnelling phase to a self-trapping phase, of a Bose-Einstein condensate in a double-well potential. The echo is found to have a relatively fast decay in the transition region, with a Gaussian decay in the self-trapping phase and a stretched exponential decay in the tunnelling phase.  相似文献   

4.
Using the axially-symmetric time-dependent Gross-Pitaevskii equation we study the phase coherence in a repulsive Bose-Einstein condensate (BEC) trapped by a harmonic and an one-dimensional optical lattice potential to describe the experiment by Cataliotti et al. on atomic Josephson oscillation [Science 293, 843 (2001)]. The phase coherence is maintained after the BEC is set into oscillation by a small displacement of the magnetic trap along the optical lattice. The phase coherence in the presence of oscillating neutral current across an array of Josephson junctions manifests in an interference pattern formed upon free expansion of the BEC. The numerical response of the system to a large displacement of the magnetic trap is a classical transition from a coherent superfluid to an insulator regime and a subsequent destruction of the interference pattern in agreement with the more recent experiment by Cataliotti et al. [New J. Phys. 5, 71 (2003)].Received: 20 March 2003, Published online: 30 July 2003PACS: 03.75.-b Matter waves - 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations - 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow  相似文献   

5.
The spatial self-organization of a Bose-Einstein condensate (BEC) in a high-finesse linear optical cavity is discussed. The condensate atoms are laser-driven from the side and scatter photons into the cavity. Above a critical pump intensity the homogeneous condensate evolves into a stable pattern bound by the cavity field. The transition point is determined analytically from a mean-field theory. We calculate the lowest lying Bogoliubov excitations of the coupled BEC-cavity system and the quantum depletion due to the atom-field coupling.  相似文献   

6.
The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5 recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott insulator (MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable phases was observed.  相似文献   

7.
We theoretically study the coupling of Bose-Einstein condensed atoms to the mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is an experimentally viable hybrid quantum system which allows one to explore the interface of quantum optics and condensed matter physics. We propose an experiment where easily detectable atomic spin flips are induced by the cantilever motion. This can be used to probe thermal oscillations of the cantilever with the atoms. At low cantilever temperatures, as realized in recent experiments, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics. With high but realistic cantilever quality factors, the strong coupling regime can be reached, either with single atoms or collectively with Bose-Einstein condensates. We discuss an implementation on an atom chip.  相似文献   

8.
We find numerically that in the limit of weak atom-atom interactions a Bose-Einstein condensate in an optical lattice may develop a pulsating dynamical instability in which the atoms nearly periodically form a peak in the occupation numbers of the lattice sites, and then return to the unstable initial state. Multiple peaks behaving similarly are also found. Simple arguments show that the pulsating instability is a remnant of integrability, and give a handle on the relevant physical scales.  相似文献   

9.
We study the effect of a one dimensional optical superlattice on the superfluid properties (superfluid fraction, number squeezing, dynamic structure factor) and the quasi-momentum distribution of the Mott-insulator. We show that due to the secondary lattice, there is a decrease in the superfluid fraction and the number fluctuation. The dynamic structure factor which can be measured by Bragg spectroscopy is also suppressed due to the addition of the secondary lattice. The visibility of the interference pattern (the quasi-momentum distribution) of the Mott-insulator is found to decrease due to the presence of the secondary lattice. Our results have important implications in atom interferometry and quantum computation in optical lattices.  相似文献   

10.
We study a Bose-Einstein condensate in a one-dimensional accelerated optical lattice using the mean-field version of the Bose-Hubbard model. Reminiscent of recent experiments [M. Cristiani et al., Opt. Express 12, 4 (2004)], we find a new type of an instability in this system that occurs in the limit when the acceleration is small.  相似文献   

11.
We investigate waveguiding of ultraslow light pulses in an atomic Bose-Einstein condensate. We show that under the conditions of off-resonant electromagnetically induced transparency, waveguiding with a few ultraslow modes can be realized. The number of modes that can be supported by the condensate can be controlled by means of experimentally accessible parameters. Propagation constants and the mode conditions are determined analytically using a Wentzel-Kramers-Brillouin analysis. Mode profiles are found numerically.  相似文献   

12.
We report on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap. The condensate is produced a few microm above a dielectric surface on an evanescent-wave atom mirror. After evaporative cooling by all-optical means, expansion measurements for the tightly confined vertical motion show energies well below the vibrational energy quantum. The presence of a condensate is observed in two independent ways by a magnetically induced collapse at negative scattering length and by measurements of the horizontal expansion.  相似文献   

13.
A proof-of-principle experiment simulating effects predicted by relativistic wave equations with ultracold atoms in a bichromatic optical lattice that allows for a tailoring of the dispersion relation is reported. We observe the analog of Klein tunneling, the penetration of relativistic particles through a potential barrier without the exponential damping that is characteristic for nonrelativistic quantum tunneling. Both linear (relativistic) and quadratic (nonrelativistic) dispersion relations are investigated, and significant barrier transmission is observed only for the relativistic case.  相似文献   

14.
We consider the ground state of vortices in a Bose-Einstein condensate. We show that turning on a weak optical periodic potential leads to a transition from the triangular Abrikosov vortex lattice to phases where the vortices are pinned by the optical potential. We discuss the phase diagram of the system for a two-dimensional optical periodic potential with one vortex per optical lattice cell. We also discuss the influence of a one-dimensional optical periodic potential on the vortex ground state. The latter situation has no analog in other condensed-matter systems.  相似文献   

15.
We study the optical bistability for a Bose-Einstein condensate of atoms in a driven optical cavity with a Kerr medium. We find that both the threshold point of optical bistability transition and the width of optical bistability hysteresis can be controlled by appropriately adjusting the Kerr interaction between the photons. In particular, we show that the optical bistability will disappear when the Kerr interaction exceeds a critical value.  相似文献   

16.
Multiple quantum coherences are often employed to describe quantum many-body dynamics in nuclear spin systems and recently,to characterize quantum phase transitions in trapped ions.Here we investigate the multiple-quantum-coherence dynamics of a spin-1 Bose-Einstein condensate.By adjusting the quadratic Zeeman shift,the condensate exhibits three quantum phases.Our numerical results show that the spectrum of multiple quantum coherence does indeed catch the quantum critical points.More importantly,with only a few low-order multiple quantum coherences,the spin-1 condensate exhibits rich signals of the many-body dynamics,beyond conventional observables.The experimental implementation of such multiple quantum coherence protocol is also discussed.  相似文献   

17.
Equations for semiclassical multimode model of interaction of a laser double beam with a Bose-Einstein condensate of dilute atomic gases are proposed. Original Russian Text ? N.I. Shamrov, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 2, pp. 294–296.  相似文献   

18.
We study nonequilibrium properties of an atomic quantum dot (AQD) coupled to a Bose-Einstein condensate (BEC) within Keldysh-Green’s function formalism when the AQD level is varied harmonically in time. Nonequilibrium features in the AQD energy absorption spectrum are the side peaks that develop as an effect of photon absorption and emission. We show that atoms can be efficiently transferred from the BEC into the AQD for the parameter regime of current experiments with cold atoms.  相似文献   

19.
Depending on the Hamiltonian parameters, two-component bosons in an optical lattice can form at least three different superfluid phases in which both components participate in the superflow: a (strongly interacting) mixture of two miscible superfluids (2SF), a paired superfluid (PSF) vacuum, and (at a commensurate total filling factor) the super-counter-fluid (SCF) state. We study the universal properties of the 2SF-PSF and 2SF-SCF quantum phase transitions and show that (i) they can be mapped onto each other and (ii) their universality class is identical to the (d+1)-dimensional normal-superfluid transition in a single-component liquid. The finite-temperature 2SF-PSF(SCF) transitions and the topological properties of 2SF-PSF(SCF) interfaces are also discussed.  相似文献   

20.
The results of simulation of the interaction of optical beams with different frequencies in an inhomogeneous Bose-Einstein condensate are given. The potential well has a parabolic profile, and the nonlinearity belongs to a defocusing class. The total reflection of a signal wave induced by a pump beam at a negative inhomogeneity during the wave capture in the potential well is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号