首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seven polynorbornene samples containing trimethylsilyl side groups that were prepared by the addition polymerization of 5-trimethylsilyl-2-norbornene in the presence of catalytic systems (π-C5H9NiCl)2-methylaluminoxane and nickel naphthenate-methylaluminoxane have been studied by translational isothermal diffusion and viscometry. The molecular masses of the polymer samples are measured. Kuhn-Mark-Houwink equations for diffusion coefficient D and intrinsic viscosity [η] are determined in toluene at 25°C: D = 6.94 × 10?4 M ?0.61 and [η] = 1.53 × 10?3 M 0.82. The equilibrium rigidity of polymers chains is estimated as A = 47 ± 9 Å. The conformational features of the silicon-containing polynorbornene are analyzed by the PM3 quantumchemical semiempirical method on the basis of simulation of its decamer chain fragments. In terms of microstructure and equilibrium rigidity, the above-described addition poly(trimethylsilylnorbornene) is close to poly(trimethylsilylpropyne) synthesized using niobium pentachloride as a catalyst. This finding explains similar membrane gas-separation properties of these polymers.  相似文献   

2.
Several highly soluble polyimides were synthesized from various aromatic tetracarboxylic dianhydrides and an aromatic diamine containing tert‐butyl pendent groups [4,4′‐methylenebis(2‐tert‐butylaniline)]. All the polyimides showed excellent solubility in common solvents such as chloroform, tetrahydrofuran, and dioxane at room temperature. The number‐average molecular weight ranged from 3.6 × 104 to 1.3 × 105 according to gel permeation chromatography relative to a polystyrene standard, and the polydispersity index was between 1.9 and 2.5. The glass‐transition temperatures of the resulting polyimides ranged from 213 to 325 °C, as measured by differential scanning calorimetry, and little weight loss was observed up to 450 °C in N2 by thermogravimetric analysis. These experimental data indicated that the tert‐butyl pendent groups reduced the interactions among polymer chains to improve their solubility in organic solvents without the loss of thermal stability. Transparent and flexible films of these polyimides were obtained via casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 229–234, 2002  相似文献   

3.
A new series of polyimides was synthesized by the condensation of monomers (azomethine‐ether diamine, DA‐1 and DA‐2) with pyromelliticdianhydride (PMDA), 3,4,9,10‐perylenetetracarboxylic dianhydride (PD) and 3,3′4,4′‐benzophenonetetracarboxylic dianhydride (BD). The structural explications of monomers and polyimides was conducted by FT‐IR, 1H NMR and elemental analysis. All polyimides were found soluble in polar aprotic solvents and found to be semicrystalline in nature confirmed by XRD. The inherent viscosities were found in the range of 0.67–0.77 g/dl. %. Average molecular weight (MW) and number average molecular weight (Mn) of the polyimides were found in the range of 5.72 × 105 g/mol–6.58 × 105 g/mol and 3.79 × 105 g/mol 4.11 × 105 g/mol respectively. The polyimides exhibited excellent thermal properties having a glass transition temperature Tg in the range of 230–290°C and the 10% weight loss temperature was above 450°C. The values of thermodynamic parameters, activation energy, enthalpy and entropy fall in the range of 45.2–53.90 kJ/mol, 43.5–52.30 kJ/mol and 0.217 kJ/mol k to 0.261 kJ/mol k respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
黄卫  颜德岳 《高分子科学》2011,29(4):506-512
Two highly soluble aromatic polyimides were synthesized successfully from a diamine with two tert-butyl groups (MBTBA)and dianhydrides with a thioether or sulfone moiety(DTDA and DSDA).Both of them showed excellent solubility in common solvents such as chloroform,tetrahydrofuran and dioxane at the room temperature.The number-average molecular weight was 6.0×104 and 8.3×104 according to gel permeation chromatography relative to a polystyrene standard,and the polydispersity index was 1.80 and 1.82 respectively.The glass-transition temperatures of them were 286℃and 314℃(or 315℃and 358℃)respectively,as measured by differential scanning calorimetry(or dynamic mechanical analysis).The 5%weight loss temperature of both was near 490℃in N2 by thermogravimetric analysis.These results indicated that the tert-butyl pendent groups reduced the interactions among polymer chains and the thioether or sulfone moiety was flexible which may improve their solubility in conventional organic solvents without the loss of thermal stability. Transparent and flexible films of the two polyimides were obtained via solution casting.The MBTBA-DTDA membrane had higher storage moduli than those of the MBTBA-DSDA membrane.  相似文献   

5.
Polymers of 1,4-bis[2-(N-vinyl)pyrrolyl]benzene with free N-vinyl groups in side chains are synthesized in the presence of AIBN (2–5 wt %, 70°C) with a yield of up to 34% and a molecular mass of up to 11.5 × 103. In the presence of cationic catalysts (Me3SiCl, the LiBF4-dimethoxyethane system, and BF3 · OEt2), 1,4-bis[2-(N-vinyl)pyrrolyl]benzene gives macromolecules with alternating 1,2-pyrrolene and ethylidene units in the backbone with yields of 80, 44, and 33%, respectively. The polymers demonstrate paramagnetic and luminescent properties.  相似文献   

6.
From imidazole-blocked 2,5-bis[(n-alkyloxy)methyl]-1,4-benzene diisocyanates and pyromellitic dianhydride a series of new rigid-rod polyimides (Cn-PY-PI; n = 4, 6, 8) having linear and flexible (alkyloxy)methyl ((SINGLE BOND)CH2OCnH2n + 1; n = 4, 6, 8) side chains were prepared and characterized and their properties were measured and discussed with regard to effects of side chains. Incorporation of the side chains onto the rigid main chain greatly enhanced the solubility and fusibility of the polymers, and melting point of C8-PY-PI was determined to be 277°C. The UV-VIS absorption behavior was independent of side-chain length. TGA thermograms revealed a two-step pyrolysis behavior, in which the side chains split off separately at lower temperatures. X-ray diffractograms showed that all the polyimides are crystalline at room temperature. Sharp reflections in small-angle region obviously indicated the presence of a layered crystal structure. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
A series of poly(vinylcarbazole)‐based polymers containing sulfonyl‐based nonlinear optical chromophores as the side chains were prepared conveniently through a postfunctionalization approach. In the polymers, the subtle structure of the chromophore moieties could be easily modified by the introduction of different isolation group, to adjust the property of the resultant polymers. The polymers exhibited good optical transparency, besides their good processability and thermal stability. The poled polymer films exhibited large second harmonic generation (SHG) coefficients of d33 values (up to 28.6 pm/V) with excellent thermal stability (about 90% of the maximal SHG coefficients remain at ~ 110 °C). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2983–2993, 2008  相似文献   

8.
2,4‐Bis‐(3,4‐dicarboxyphenylcarboxyethoxy)‐1‐(2,2‐dicyanovinyl)benzene dianhydride (4) was prepared and reacted with 4,4′‐oxydianiline, 4,4′‐diaminobenzanilide and 4,4′‐(hexafluoroisopropylidene)dianiline to yield novel Y‐type polyimides 5‐7 containing 2,4‐dioxybenzylidenemalononitrile groups as nonlinear optical (NLO) chromophores, which constitute parts of the polymer backbone. The resulting polyimides 5‐7 are soluble in polar solvents such as dimethylsulfoxide and N,N‐dimethylformamide. Polymers 5‐7 showed a thermal stability up to 330 °C in thermogravimetric analysis thermograms with Tg values obtained from differential scanning calorimetry thermograms in the range 179–194 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 5.56 × 10?9 esu. The dipole alignment exhibited exceptionally high thermal stability even at 20 °C higher than the glass‐transition temperature there was no SHG decay below 215 °C because of the partial main‐chain character of polymer structure, which is acceptable for NLO device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3078–3087, 2008  相似文献   

9.
In order to obtain polymers having high second order nonlinear optical (NLO) response, various novel polymers that contain polar dye molecules in side chains and diacetylenic groups in the main chains were synthesized, and their second order NLO properties were studied. Some of these polymers consisting of para-benzoate and para-cinnamate main chains, showed extremely high NLO coefficients, d33 of 200 - 350 pm/V, and the corresponding meta polymers showed much inferior NLO coefficients. The polymers having aliphatic main chains had very little NLO response probably because of their low glass transition temperatures and flexibility of main chains. The high SHG responses of these polymers are attributed to their facile orientation of both chromophores and main chains. In the case of para-polymers, the main chain orientation of alkoxybenzoate and cinnamate along the chromophore is thought to be a reason for their high NLO coefficients.  相似文献   

10.
A series of novel polyimide electrolytes having long pendant sulfo‐ or phosphoalkoxy groups were synthesized for fuel‐cell applications. Sulfodecyloxy‐, phosphodecyloxy‐, and sulfophenoxydodecyloxy‐substituted benzidine monomers were synthesized from dihydroxybenzidine. These monomers were copolymerized with naphthalene tetracarboxylic dianhydride and fluorenylidene dianiline to give the corresponding polyimides. A flexible, ductile, and self‐standing membrane was obtained via casting from the polyimide solution. Because the acid groups were on long pendant side chains and away from the main chains, the polyimide membrane showed improved oxidative and hydrolytic stability in comparison with the polyimides with sulfonic acid groups on the main chains or on the short side chains. High thermal stability (no glass‐transition temperature and a decomposition temperature > 200 °C) was also obtained. The polyimide membrane displayed high proton conductivity of 10?1 S cm?1 at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3995–4005, 2006  相似文献   

11.
《先进技术聚合物》2018,29(7):2091-2102
This article presents the synthesis of nonlinear optical responsive chromophores by adopting a green chemistry approach by coupling N‐methyl‐N‐(2‐hydroxyethyl)‐4‐amino benzaldehyde with barbituric acid, 1,3‐indanedione, and 1,3‐diethyl‐2‐thiobarbituric acid as the acceptors through stilbene linkage. We performed the synthesis in less than 10 minutes at room temperature with water as a solvent without catalyst. Two different side‐chain polyimides were synthesized from poly(hydroxy‐imide)s with chromophores by Mitsunobu reaction. The chromophores were characterized by Fourier transform infrared, 1H NMR, 13C NMR, and elemental analysis. However, the polyimides were characterized by Fourier transform infrared and 1H NMR. The inherent viscosities (ηinh) of polyimides were determined by Ubbelohde viscometer, which ranged between 0.1793 and 0.1890 dL/g. The molecular weights of the polyimides were determined using gel permeation chromatography and were in range of 23 000 to 26 000. Polyimides demonstrated an excellent solubility in polar aprotic solvents, indicating good processability. Thermal behavior of these polyimides was studied by differential scanning calorimetry and thermogravimetric analysis. The Tg's were in the range of 185°C to 255°C. The change in the molecular orientation in the polymer films after electrical poling was ascertained using ultraviolet‐visible spectrophotometer and atomic force microscopy. The thicknesses and refractive indices of the thin films were determined by an ellipsometer. The second harmonic generation coefficients of the corona‐poled polymer films at Topt's, determined by the Maker fringe technique, ranged between 59.33 and 77.82 pm/V. High thermal endurance observed for the polyimides is attributed to the extensive hydrogen bonds in the matrix. The developed polyimides showed no decay in second harmonic generation signals below 110°C, indicating the acceptance for nonlinear optical devices.  相似文献   

12.
3-Phenyl-tricyclo [6,2,2,02,7]dodeca-2,11-ene-5,6,9,10-tetracarboxylic dianhydride was prepared from 1,1-diphenyl ethylene and maleic anhydride in 1 : 2 mole ratio by [4 + 2]π Diels-Alder cycloaddition. The structure of the dianhydride was determined by mass spectroscopy, IR, 1H-NMR, elemental analyses, and single crystal x-ray diffraction. The monomer was condensed with several diamines in N-methyl pyrrolidone or m-cresol. The polyamic acids and the polyimides synthesized had inherent viscosities in the range of 0.19–0.31 and 0.17–0.25 dL/g, respectively, measured in N-methyl pyrrolidone at 30°C. Both the polyamic acids and the polyimides were found to be soluble in m-cresol, N-methyl pyrrolidone, dimethylacetamide, dimethyl formamide, and dimethyl sulfoxide. The polymides showed a low degree of crystallinity from wide angle x-ray diffraction. Thermal analysis of these polyimides revealed that their glass transition temperatures (Tg) were in the 215–237°C range and they decomposed in two stages. The first-stage decomposition temperatures were almost the same in O2 or N2 atmospheres, but the polymers showed a better thermal stability in O2 rather than in N2 in the second stage. The mechanism of thermal degradation is discussed.  相似文献   

13.
A series of new polyimides containing alicyclic units and alkyloxy side chains were prepared from 9,10‐dialkyloxy‐1,2,3,4,5,6,7,8‐octahydro‐2,3,6,7‐anthracenetetracarboxylic 2,3:6,7‐dianhydrides and various aromatic diamines. Their physical properties and structures were investigated. Polymers were obtained with inherent viscosities of 0.24–0.53 dL/g. In comparison with the aromatic polyimides, most polymers were readily soluble in common organic solvent such as N‐methylpyrrolidone and m‐cresol. These polymers had glass‐transition temperatures between 111 and 296 °C depending on the structure of the repeating unit and 10% weight‐loss temperatures of 418–477 °C in nitrogen. Wide‐angle X‐ray diffractometry for as‐polymerized samples revealed very low crystallinity and layered structures, which were better developed in the polymers with longer side chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1764–1774, 2002  相似文献   

14.
A series of novel benzimidazole-containing aromatic polyimides with precise structures in high yields were synthesized by the catalyst-free nucleophilic substitution polycondensation of 4,4’-bis(4-fluorophthalimido) diphenyl ether with different molar ratios of 1,4-bis(2-benzimidazolyl) benzene to 4,4’-dihydroxydiphenyl sulfone via a C–N/C–O coupling reaction process. The reaction was carried out at 210°C in the presence of anhydrous potassium carbonate. The structures of the resulting polymers were characterized by means of FTIR, 1H NMR spectroscopy, and elemental analysis, and the results were largely consistent with the proposed structure. DSC and TG measurements showed that the polymers had high glass transition temperatures (Tg > 215°C), good thermostability, and high decomposition temperatures (Td5% > 456°C). These novel polymers also showed easy solubility. In addition, the obtained films have good optical transparency, and the mechanical properties exhibited tension strength of 48.2–74.8 MPa and tensile moduli of 1.3–1.9 GPa without any stretching.  相似文献   

15.
Eight novel PEG-based amphiphilic block copolymers having self-assembling properties has been reported in the present study. The polymers have been synthesized by reacting Poly(ethylene glycols) (PEGs) of different molecular weights viz. 600, 1000, 1500 and 2000 and dimethyl-5-hydroxyisophthalate in presence of concentrated H2SO4 as catalyst in solventless condition at 80–90°C and further alkylating the resulting polymers by attaching octyl and hexadecanyl chains to phenolic hydroxyl group. The resulting functionalized amphiphilic polymers have been characterized by 1H and 13C-NMR spectroscopy. These polymers, when dissolved in water, aggregate to form micelles, giving sizes ranging from 13.00 to 87.24 nm as determined by Dynamic Light Scattering (DLS) instrument. The molecular weights have been also calculated from the DLS and are in the range 3.5×104 to 1.8×106 KDa (Kilo Daltons). Critical Micelle Concentrations (CMC) of the synthesized polymers was determined using electrical conductivity meter with values in the range of 105 to 138 mg L?1 (milligrams per litre).  相似文献   

16.
The anionic polymerization of acrylonitrile in DMF initiated by lithium 1,2-bis(diethylamino)-2-oxoethanolate in the range ?60 to 0°C has been studied. The initiator efficiency at low temperatures (?60 to ?40°C) is 2–6%; it remains nearly invariable with conversion owing to the associated state of the initiator. The low concentration of growing active centers is constant throughout the process; as a result, polymers with M > 3 × 105 are produced. The polymers are characterized by a narrow molecular-mass distribution, M w/M n = 1.3–1.6, and contain insignificant amounts of low-molecular-mass fractions. It has been shown that controlled polymerization processes can be carried outat moderately low temperatures (?30 to 0°C), and experimental conditions for freezing of polymerization and its recommencement have been ascertained. Optimum conditions for the synthesis of a high-molecular-mass polyacrylonitrile with M > 3 × 105 have been established, and the method for preparing polymers with M = (6.50–8.5) × 105 on an enlarged scale using high concentrations of the monomer has been developed.  相似文献   

17.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

18.
The polycondensation of 2-β-oxyethyl-3,3-bis(4-oxyphenyl)phthalimidine with 4,4′-difluorobenzophenone proceeding via the nucleophilic substitution of the activated halogen atom in aryl halide has been studied. Conditions ensuring formation of noncrosslinked high-molecular-mass homo- and copoly(arylene ether ketones) containing side alcoholic hydroxyl groups (4,4′-difluorobenzophenone: a mixture of bisphenols: K2CO3: Na2CO3 = 1: 1: 1: 0.05) have been established. The polymers have M w = (20–88.7) × 103 and show good solubility in organic solvents; their onset temperatures of softening are in the range 195–250°C. Polymer films cast from solution are characterized by a breaking strength of 78–109 MPa.  相似文献   

19.
New aromatic polyamide and polyimides were prepared from di(aminophenyl)acetylenediurea. In addition, model compounds were synthesized and their IR spectra were in agreement with those of the corresponding polymers. The polymers were amorphous and readily soluble in polar aprotic solvents (DMF, NMP, DMSO) and certain acids (H2SO4, CCl3COOH). The hydrophilicity of polyamide was estimated by measuring the isothermal water absorption. The polyamide softened at 260°C but no softening was observed for polyimides. The glass transition temperatures of polymers were determined by the TMA method and they were in the range of 235–310°C. The polymers were stable up to 359–404°C in N2 or air and afforded char yields of 53–65% at 800°C in N2. © 1996 John Wiley & Sons, Inc.  相似文献   

20.

Two novel diamine monomers, bis(4‐amino‐3,5‐dimethylphenyl)‐3‐pyridyl methane and bis(4‐aminophenoxy‐3,5‐dimethylphenyl)‐3‐pyridyl methane were synthesized. A series of pyridine containing aromatic polyimides derived from the diamines were synthesized through a typical two‐step polymerization method. Most of the polymers show good solubility in NMP, DMAc, DMF, DMSO and CHCl3 at room temperature. These polyimides exhibit Tg in the range of 249–317°C and 10% wt loss (T10) takes place in the range of 474–564°C in N2 and 469–558°C in air. The polymers have tensile strength in the range of 88–96 MPa, elongation at break in the range of 8.5–12.5% and tensile modulus in the range of 1.5–2.1 GPa. These polyimides also have low dielectric constant (3.26–3.64 at 1 KHz and 3.24–3.61 at 10 KHz) and low moisture absorption (0.42–0.89%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号