首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Unsteady problems concerning the displacement of gas and oil deposits in a seepage flow of stratal water are of specific interest to oil and gas hydrogeology, and in the planning and analysis of the processes of reservoir exploitation. Firstly, a change of the hydrogeological environment in a region of already formed deposits involves their displacement. Secondly, when one of two adjacent deposits is developed, a displacement of the other occurs in the artificial flow of stratal water which is produced. Papers [1–3] investigate the steady configuration of gas—water or water—oil contacts in the presence of a seepage flow of stratal water under the deposit. The unsteady problem considered below is a generalization of the problem in paper [3]. Its characteristic property is the presence of mobile boundaries separating the regions with flow of different fluids in the horizontal plane.Translated from Izvestiya Akademii Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, pp. 177–179, March–April, 1985.  相似文献   

2.
Composite waves on the surface of the stationary flow of a heavy ideal incompressible liquid are steady forced waves of finite amplitude which do not disappear when the pressure on the free surface becomes constant but rather are transformed into free nonlinear waves [1]. It will be shown that such waves correspond to the case of nonlinear resonance, and mathematically to the bifurcation of the solution of the fundamental integral equation describing these waves. In [2], a study is made of the problem of composite waves in a flow of finite depth generated by a variable pressure with periodic distribution along the surface of the flow. In [3], such waves are considered for a flow with a wavy bottom. In this case, composite waves are defined as steady forced waves of finite amplitude that, when the pressure becomes constant and the bottom is straightened, do not disappear but are transformed into free nonlinear waves over a flat horizontal bottom. However, an existence and uniqueness theorem was not proved for this case. The aim of the present paper is to fill this gap and investigate the conditions under which such waves can arise.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 88–98, July–August, 1980.  相似文献   

3.
Steady-state flow towards a well through a thin porous deformable two-layer reservoir with allowance for deformation of the surrounding rocks is investigated. The permeability of the reservoir is considered to be a function of the displacements of its top and bottom. The effect of deformation on the well production indicators is studied. The results obtained agree qualitatively with the data of full-scale experiments. Earlier, in [1–5], in considering the self-consistent processes of flow through porous media and their deformation attention was concentrated on the analysis of the stress-strain state of the rocks and reservoir and on unsteady problems within the framework of the nonlocally elastic flow regime.Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 86–93, January–February, 1995.  相似文献   

4.
Linear axisymmetric Stokes flow over a porous spherical particle is investigated. An exact analytic solution for the fluid velocity components and the pressure inside and outside the porous particle is obtained. The solution is generalized to include the cases of arbitrary three-dimensional linear shear flow as well as translational-shear Stokes flow. As the permeability of the particle tends to zero, the solutions obtained go over into the corresponding solutions for an impermeable particle. The problem of translational Stokes flow around a spherical drop (in the limit a gas bubble or an impermeable sphere) was considered, for example, in [1,2]. A solution of the problem of translational Stokes flow over a porous spherical particle was given in [3]. Linear shear-strain Stokes flow over a spherical drop was investigated in [2].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 113–120, May–June, 1995.  相似文献   

5.
The authors consider problems connected with stability [1–3] and the nonlinear development of perturbations in a plane mixing layer [4–7]. Attention is principally given to the problem of the nonlinear interaction of two-dimensional and three-dimensional perturbations [6, 7], and also to developing the corresponding method of numerical analysis based on the application to problems in the theory of hydrodynamic stability of the Bubnov—Galerkin method [8–14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 1, pp. 10–18, January–February, 1985.  相似文献   

6.
The propagation of an extended hydrofracture in a permeable elastic medium under the influence of an injected viscous fluid is considered within the framework of the model proposed in [1, 2]. It is assumed that the motion of the fluid in the fracture is turbulent. The flow of the fluid in the porous medium is described by the filtration equation. In the quasisteady approximation and for locally one-dimensional leakage [3] new self-similarity solutions of the problem of the hydraulic fracture of a permeable reservoir with an exponential self-similar variable are obtained for plane and axial symmetry. The solution of this two-dimensional evolution problem is reduced to the integration of a one-dimensional integral equation. The asymptotic behavior of the solution near the well and the tip of the fracture is analyzed. The difficulties of using the quasisteady approximation for solving problems of the hydraulic fracture of permeable reservoirs are discussed. Other similarity solutions of the problem of the propagation of plane hydrofractures in the locally one-dimensional leakage approximation were considered in [3, 4] and for leakage constant along the surface of the fracture in [5–7].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 91–101, March–April, 1992.  相似文献   

7.
The analysis of the pressure recovery in an oil field following the shutting in of a well is one of the basic methods of determining or refining the reservoir parameters. For fractured reservoirs the process is complicated by the strong dependence of their flow-capacity characteristics on the state of stress. It is shown that, qualitatively, the pressure recovery processes in fractured and fractured porous media can be correctly described using the integral conservation laws. Numerical solutions are derived in order to estimate the validity of the results obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 77–83, September–October, 1990.  相似文献   

8.
A study is made of the isothermal flow of multicomponent mixtures in a porous medium, accompanied by phase transitions, interphase mass exchange, and change in the physicochemical properties of the phases [1–3], It is assumed that at each point of the flow region, phase equilibrium is established instantaneously and the flow velocities of the separate phases conform to Darcy's law. Approximate solutions of problems of displacing oil by high-pressure gas were obtained in [1]. By generalizing the theory developed in [4], a study is made in [5] of the structure of the exact solutions of the problems of the flow of three-component systems which describe the displacement of oil by different reactants (gases, solvents, micellar solutions). The numerical solutions of the problems of multicomponent system flow are considered in [2, 3, 6, 7]. This paper presents a numerical method which is distinguished from the well-known ones [2, 3, 6, 7] by the following characteristics. The flow equations are approximated by a completely conservative finite-difference scheme of the implicit pressure-explicit saturation type, the calculation being carried out using Newton's method of iteraction with spect to both the pressure and the composition of the mixture. The minimum derivative principle [8] is used in the approximation of the divergence terms of the equations. The phase equilibrium is calculated using the equation of state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 101–110, July–August, 1985.  相似文献   

9.
Distributed blowing of gas into a supersonic stream from flat surfaces using an inviscid flow model was studied in [1–9]. A characteristic feature of flows of this type is the influence of the conditions specified on the trailing edge of the body on the complete upstream flow field [3–5]. This occurs because the pressure gradient that arises on the flat surface is induced by a blowing layer whose thickness in turn depends on the pressure distribution on the surface. The assumption of a thin blowing layer makes it possible to ignore the transverse pressure gradient in the layer and describe the flow of the blown gas by the approximate thin-layer equations [1–5]. In addition, at moderate Mach numbers of the exterior stream the flow in the blowing layer can be assumed to be incompressible [3]. In [7, 8] a solution was found to the problem of strong blowing of gas into a supersonic stream from the surface of a flat plate when the blowing velocity is constant along the length of the plate. In the present paper, a different blowing law is considered, in accordance with which the flow rate of the blown gas depends on the difference between the pressures on the surface over which the flow occurs and in the reservoir from which the gas is supplied. As in [8, 9], the solution is obtained analytically in the form of universal formulas applicable for any pressure specified on the trailing edge of the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 108–114, September–October, 1980.I thank V. A. Levin for suggesting the problem and assistance in the work.  相似文献   

10.
The nonlinear problem of cavitation flow around a plate by a stream of heavy liquid is investigated in precise formulation; the plate is located on the horizontal floor of a channel when the gravity vector is directed perpendicular to the wall of the channel. Two flow systems are considered-Ryabushinskii's and Kuznetsov's system [1]. This problem was investigated in linear formulation in [2], Similar problems were considered earlier in [3–7] for unrestricted flow. Below, on the basis of a method proposed by Birkhoff [8, 9], all the principal hydrodynamic and geometric characteristics are calculated for the problem being considered.Translated from Ivestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 3, pp. 3–9, May–June, 1973.  相似文献   

11.
Zazovskii  A. F. 《Fluid Dynamics》1986,21(2):251-256
To preserve the stability of the front relative to small perturbations when one fluid is displaced by another the pressure gradient must decrease on crossing the front in the direction of displacement. Initially, this criterion was established for the piston displacement of fluids [1, 2], and later in the case of two-phase flow of immiscible fluids in porous media for the displacement front corresponding to the saturation jump in the Buckley—Leverett problem [3, 4]. Below it is shown that the same stability criterion remains valid for flows in porous media accompanied by interphase mass transfer and phase transitions [5, 6]. Processes of these kinds are encountered in displacing oil from beds using active physicochemical or thermal methods [7] and usually reduce to pumping into the bed a slug (finite quantity) of reagent after which a displacing agent (water or gas) is forced in. The slug volume may be fairly small, especially when expensive reagents are employed, and, accordingly, in these cases the question of the stability of displacement is one of primary importance. These active processes are characterized by the formation in the displacement zone of multiwave structures which, in the large-scale approximation (i.e., with capillary, diffusion and nonequilibrium effects neglected), correspond to discontinuous distributions of the phase saturations and component concentrations [5–10]. It is shown that the stability condition for a plane front, corresponding to a certain jump, does not depend on the type of jump [11, 12] and for a constant total flow is determined, as in simpler cases, by the relation between the total phase mobilities at the jump. An increase in total flow in the direction of displacement is destabilizing, while a decrease has a stabilizing influence on the stability of the front. Other trends in the investigation of the stability of flows in porous media are reviewed in [13].Translated fron Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 98–103, March–April, 1986.  相似文献   

12.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

13.
The elastic flow regime of stratal fluids has been well studied in the literature [1, 2] and the results have been widely applied in practice in the development of oilfields [3, 4]. Consideration is given below to the new problem of the reduction in the output of a well at fixed well-bottom pressure after it has been operating for some time at constant output. There is a practical aspect to this sort of problem. For instance, the degassing of the reservoir in the region of the well is considered an undesirable feature in the exploitation process. If degassing begins, the resistance to flow grows sharply and the well outputs fall considerably. Once the well-bottom pressure has fallen to the saturation pressure, it must not be allowed to fall further, or gas will be given off in the well region of the reservoir. It is desirable to keep the well-bottom pressure higher than the saturation pressure.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 82–87, March–April, 1985.  相似文献   

14.
The transition flow is considered of a fibrous suspension in a pipe. The flow region consists of two subregions: at the center of the flow a plug formed by interwoven fibers and fluid moves as a rigid body; between the solid wall and the plug is a boundary layer in which the suspension is a mixture of the liquid phase and fibers separated from the plug [1–3]. In the boundary region the suspension is simulated as an anisotropic Ericksen—Leslie fluid [4, 5] which satisfies certain additional conditions. Equations are obtained for the velocity profile and drag coefficient of the pipe, which are both qualitatively and quantitatively in good agreement with the experimental results [6–8]. Within the framework of the model, a mechanism is found for reducing the drag in the flow of a fibrous suspension as compared to the drag of its liquid phase.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 91–98, September–October, 1985.  相似文献   

15.
The effect of a rigid bottom of periodic form on small periodic oscillations of the free surface of a liquid is considered with the assumption of low amplitude roughness. The methodologically most significant study in this direction, [1], will be utilized. In [1] the steady-state problem for flow over an arbitrarily rough bottom was studied. Other studies have recently appeared on small free oscillations above a rough bottom. Essentially these have considered the effect of underwater obstacles and cavities on surface waves in the shallow-water approximation (for example, [2], [3]). Liquid oscillations in a layer of arbitrary depth slowly varying with length were considered in [4]. However, these results cannot be applied to the study of resonant interaction of gravitational waves with a periodically curved bottom.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 43–48, July–August, 1984.  相似文献   

16.
A study is made of the propagation of disturbances in the neighborhood of a well in the case of a linear elastic regime for a flow law with limiting gradient, and also for a nonlinear elastic regime for different forms of the flow law. The obtained results are used to investigate the difference between two forms of flow anomaly — nonlinearity of the flow law associated with non-Newtonian behavior of the fluid and a pressure dependence of the parameters of the nonlinear flow law due to nonlinear elastic deformations of strata [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 66–70, July–August, 1983.I thank V. M. Entov and L. A. Chudov for helpful advice and discussion.  相似文献   

17.
The stability of steady-state flow is considered in a medium with a nonlocal coupling between pressure and density. The equations for perturbations in such a medium are derived in the linear approximation. The results of numerical integration are given for shear motion. The stability of parallel layered flow in an inviscid homogeneous fluid has been studied for a hundred years. The mathematics for investigating an inviscid instability has been developed, and it has been given a physical interpretation. The first important results in flow stability of an incompressible fluid were obtained in the papers of Helmholtz, Rayleigh, and Kelvin [1] in the last century. Heisenberg [2] worked on this problem in the 1920's, and a series of interesting papers by Tollmien [3] appeared subsequently. Apparently one of the first problems in the stability of a compressible fluid was solved by Landau [4]. The first investigations on the boundary-layer stability of an ideal gas were carried out by Lees and Lin [5], and Dunn and Lin [6]. Mention should be made of a series of papers which have appeared quite recently [7–9]. In all the papers mentioned flow stability is investigated in the framework of classical single-phase hydrodynamics. Meanwhile, in recent years, the processes by which perturbations propagate in media with relaxation have been intensively studied [10–12].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 87–93, May–June, 1976.  相似文献   

18.
Analysis of the exploitation of deposits with anomalously high formation pressures has shown [1] that when the weighted-mean formation pressure drops below a certain critical value (close to the hydrostatic pressure) a rather sharp sudden fall in output, together with a change in the rate of decline of pressure, is observed. The fall in output is attributable to the closing of the joints and the resulting catastrophic deterioration in the permeability of the reservoir [2]. In this paper an attempt is made to develop a joint closing hypothesis, to calculate the motion of the joint closing front from the bottom of the well to the edge of a homogeneous circular formation, and to derive expressions for predicting the fall in the output of the wells and the pressure in the formation. In order to obtain solutions it is assumed that the reservoir depletion regime is quasisteady, so that the results should be regarded as approximate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 73–83, November–December, 1985.  相似文献   

19.
Pan'ko  S. V. 《Fluid Dynamics》1985,20(3):427-432
Exact solutions for flow problems in porous media with a limiting gradient in the case when the flow region in the hodograph plane is a half-strip with a longitudinal cut [1] are known only for two models of the resistance law [2–6]. The present study gives a one-parameter family of flow laws, and argues the possibility of effective determination of exact and approximate analytical solutions on the basis of successive reduction to boundary-value problems for the Laplace equation or for the equation studied in detail in [1]. It should be noted that the characteristics of the flow are determined without additional quadratures.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 107–112, May–June, 1985.  相似文献   

20.
Investigations into the convective transport of heat in porous materials are of interest for many applications in connection with the problem of increasing the efficiency of thermal insulation. In [1–5], convection in Isotropic porous media was considered. However, in many cases porous materials have an essential anisotropy of their permeability. Convective heat transfer has been inadequately studied for this case. In [6], the linearized equations were used to study the convection between infinite horizontal planes with a filling of an anisotropic material; the value of the critical Rayleigh number was found, and this agreed satisfactorily with experimental data. In the present paper, we investigate numerically convection between two infinite coaxial cylinders with an anisotropic porous filling, using the equations of convection in the Darcy—Boussinesq approximation [1–3]. The permeability tensor in the annular region is constructed from its principal values, which can be found experimentally. A method of calculation is developed and a parametric study made of the structure of the flow and of the local and averaged characteristics of the heat transfer, which are of interest for the design of thermal insulation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 59–64, January–February, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号