首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The reactions of the anticancer complex trans-[PtCl(2)[(E)-HN==C(OMe)Me](2)] (trans-EE) with both single-stranded and double-stranded deoxyribonucleotides have been studied by HPLC and 2D [(1)H,(15)N] HMQC NMR spectroscopy and compared with those of cis-[PtCl(2)(NH(3))(2)] (cis-DDP). Reactions of trans-EE with the single-stranded oligonucleotides d(CCTCGCTCTC) and d(CCTGGTCC) proceed rapidly through solvolysis of the starting substrate and subsequent formation of G-N7/monochloro trans-EE adducts. The rate of reaction is comparable to that of formation of an adduct from trans-EE and the dinuclotide d(ApG). Quite unexpectedly, the double-helical duplexes, d(TATGGTACCATA)(2) and d(TATGGCCATA)(2), with no terminal G residues, are practically inert towards trans-EE, and only minor species (< 5 % as estimated from HPLC traces) appear during 24 h reaction time. However, the duplexes d[(CCTCGCTCTC). (GAGAGCGAGG)] and d(GATAGGCCTATC)(2), which contain both terminal and central G residues, undergo platination only at the terminal, solvent-exposed, G residues, thereby confirming that the interior of the duplex is not accessible to trans-EE due to steric hindrance. In contrast, cis-DDP was found to bind exclusively to the central GG pair in d(GATAGGCCTATC)(2).  相似文献   

2.
The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive intermediates along the reaction coordinate. The aquation process occurs via weaker Pt-Cl-Hg or Pt-Cl-HgCl bridged complexes.  相似文献   

3.
Pt(IV)-mediated addition of the sulfimide Ph2S = NH and the mixed sulfide/sulfimides o- and p-[PhS(=NH)](PhS)-C6H4 by the S=NH group to the metal-bound nitriles in the platinum(IV) complexes [PtCl4(RCN)2] proceeds smoothly at room temperature in CH2Cl2 and results in the formation of the heterodiazadiene compounds [PtCl4[NH=C(R)N=SR'Ph]2] (R' = Ph, R = Me, Et, CH2Ph, Ph; R' = o- and p-(PhS)C6H4; R = Et). While trans-[PtCl4(RCN)2] (R = Et, CH2Ph, Ph) reacting with Ph2S=NH leads exclusively to trans-[PtCl4[NH=C(R)N=SPh2]2], cis/trans-[PtCl4(MeCN)2] leads to cis/trans mixtures of [PtCl4[NH=C(Me)N=SPh2]2] and the latter have been separated by column chromatography. Theoretical calculations at both HF/HF and MP2//HF levels for the cis and trans isomers of [PtCl4[NH=C(Me)N=SMe2]2] indicate a higher stability for the latter. Compounds trans-[PtCl4[E-NH=C(R)N=SPh2]2] (R = Me, Et) and cis-[PtCl4[E-NH=C(Me)N=SPh2][Z-NH=C(Me)N=SPh2]] have been characterized by X-ray crystallography. The complexes [PtCl4[NH=C(R)N=SPh2]2] undergo hydrolysis when treated with HCl in nondried CH2Cl2 to achieve the amidines [PtCl4[NH=C(NH2)R]2] the compound with R = Et has been structurally characterized) and Ph2SO. The heterodiazadiene ligands, formed upon Pt(IV)-mediated RCN/sulfimide coupling, can be liberated from their platinum(IV) complexes [PtCl4[NH=C(R)N=SR'Ph]2] by reaction with Ph2PCH2CH2PPh2 (dppe) giving free NH=C(R)=SR'Ph and the dppe oxides, which constitutes a novel route for such rare types of heterodiazadienes whose number has also been extended. The hybrid sulfide/sulfimide species o- and p-[PhS(=NH)](PhS)C6H4 also react with the Pt(II) nitrile complex [PtCl2(MeCN)2] but the coupling--in contrast to the Pt(IV) species--gives the chelates [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh]]. The X-ray crystal structure of [PtCl2[M-I=C(Me)N=S(Ph)C6H4SPh-o]] reveals the bond parameters within the metallacycle and shows an unusual close interaction of the sulfide sulfur atom with the platinum.  相似文献   

4.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

5.
The reaction of platinum(IV) complex trans-[PtCl4(EtCN)2] with pyrazoles 3,5-RR'pzH (R/R' = H/H, Me/H, Me/Me) leads to the formation of the trans-[PtCl4{NH=C(Et)(3,5-RR'pz)}2] (1-3) species due to the metal-mediated nitrile-pyrazole coupling. Pyrazolylimino complexes 1-3 (i) completely convert to pyrazole complexes cis-[PtCl4(3,5-RR'pzH)2] by elimination of EtCN upon reflux in a CH2Cl2 solution or upon heating in the solid state; (ii) undergo exchange at the imino C atom with another pyrazole different from that contained in the pyrazolylimino ligand. The reaction of trans-[PtIICl2(EtCN)2] and 3,5-RR'pzH, conducted under conditions similar to those for trans-[PtIVCl4(EtCN)2], is much less selective, and the composition of the products strongly depends on the pyrazole employed: (a) with pzH, the reaction gives a mixture of three products, i.e., [PtCl2NH=C(Et)pz-kappa2N,N}] (4), [PtCl(pzH){NH=C(Et)pz-kappa2N,N}]Cl (5), and [Pt(pzH)2{NH=C(Et)pz-kappa2N,N}]Cl2 (6) (complexes 5 and 6 are rather unstable and gradually transform to trans-[PtCl2(pzH2] and [Pt(pzH)(4)]Cl(2) and free EtCN); (b) with 3,5-Me(2)pzH, the reaction leads to the formation of [PtCl2NH=C(Et)(3,5-Me2pz)-kappa2N,N}] (7) and [PtCl(3,5-Me2pzH)3]Cl (8); (c) in the case of asymmetric pyrazole 3(5)-MepzH, which can be added to EtCN and/or bind metal centers by any of the two nonequivalent nitrogen sites, a broad mixture of currently unidentified products is formed. The reduction of 1-3 with Ph3P=CHCO2Me in CHCl3 allows for the formation of corresponding platinum(II) compounds trans-[PtCl2{NH=C(Et)(3,5-RR'pz)}2] (9-11). Ligands NH=C(Et)(3,5-RR'pz) (12-14) were almost quantitatively liberated from 9-11 with 2 equiv of 1,2-bis-(diphenylphosphino)ethane in CDCl3, giving free imines 12-14 in solution and the precipitate of trans-[Pt(dppe)2](Cl)2. Pyrazolylimines 12-14 undergo splitting in CDCl3 solution at 20-25 degrees C for ca. 20 h to furnish the parent propiononitrile and the pyrazole 3,5-RR'pzH, but they can be synthetically utilized immediately after the liberation.  相似文献   

6.
trans-[PtCl2(Am)(pip-pip)] x HCl complexes, where Am = ammine, methylamine and dimethylamine, react with ubiquitin to form 1:1 covalent adducts. The platinum complexes bind exclusively to Met1 of ubiquitin forming trans-[PtCl(S-Met1-Ub)(Am)(pip-pip)] adducts. These adducts are reactive towards nucleophiles and react with deoxyguanosine (dGMP) to form the ternary trans-[Pt(dGMP)(S-Met1-Ub) (Am)(pip-pip)] complex which is stable in water and even in the presence of excess glutathione (GSH). Reaction of trans-[PtCl(S-Met1-Ub)(Am)(pip-pip)] with GSH resulted in the rapid formation of the ternary complex trans-[Pt(GS)(S-Met1-Ub)(Am)(pip-pip)] which was not stable and slowly lost the platinum moiety; after 7 days the platinum moiety was completely removed and the native ubiquitin was regenerated.  相似文献   

7.
The reaction of vic-dioximes with the organonitrile platinum(IV) complexes trans-[PtCl4(RCN)2] (R = Me, CH2Ph, Ph, vic-dioxime = dimethylglyoxime; R = Me, vic-dioxime = cyclohexa-, cyclohepta-, and cyclooctanedione dioximes) proceeds rapidly under relatively mild conditions and affords products of one-end addition of the dioximes to the nitrile carbon, i.e. [PtC4(NH=C(R)ON=[spacer]=NOH)2] (1-6) (R = Me, CH2Ph, Ph, spacer = C(Me)C-(Me) for dimethylglyoxime; R = Me, spacer = C[C4H8]C, C[C5H10]C, C[C6H12]C for the other dioximes), giving a novel type of metallaligand. All addition compounds were characterized by elemental analyses (C, H, N, C1, Pt), FAB mass spectrometry, and IR and 1H, 13C[1H], and 195Pt NMR spectroscopy. X-ray structure determination of the dimethylformamide bis-solvate [PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] x 2DMF (la) disclosed its overall trans geometry with the dimethylglyoxime part in anti configuration and the amidine one-end (rather than N,N-bidentate) coordination mode of the N-donor ligands. When a mixture of cis- and trans-[PtC4(MeCN)2] in MeCN was treated with dimethylglyoxime, the formation of, correspondingly, cis- and trans-[PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] (1) was observed and cis-to-trans isomerization in DMSO-d6 solution was monitored by 1H, 2D [1H,15N] HMQC, and 195Pt NMR spectroscopies. Although performed ab initio calculations give evidence that the trans geometry is the favorable one for the iminoacylated species [PtCl4-(ligand)2], the platinum(IV) complex [PtCl4(NH=C(Me)ON=C[C4Hs]C=NOH)2] (4) was isolated exclusively in cis configuration with the two metallaligand "arms" held together by intramolecular hydrogen bonding between the two peripheral OH groups, as it was proved by single-crystal X-ray diffractometry. The classic substitution products, e.g. [PtC12(N,N-dioximato)2] (12-15), are formed in the addition reaction as only byproducts in minor yield; two of them, [PtCl2(C7H11N2O2)2] (14) and [PtCl2(C8H13N2O2)2] (15), were structurally characterized. Complexes (12-15) were also prepared by reaction of the vic-dioximes with [PtCl4L(Me2SO)] (L = Me2SO, MeCN), but monoximes (Me2C=NOH, [C4H8]C=NOH, [C5H10]C=NOH, PhC(H)=NOH, (OH)C6H4C(H)= NOH) react differently adding to [PtCl4(MeCN)(Me2SO)] to give the corresponding iminoacylated products [PtCl4(NH=C(Me)ON=CRR')(Me2SO)](7-11).  相似文献   

8.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

9.
The metal-mediated iminoacylation of ketoximes R1R2C=NOH (1a R1 = R2 = Me; 1b R1 = Me, R2 = Et; 1c R1R2 = C4H8; 1d R1R2 = C5H10) upon treatment with the platinum(II) complex trans-[PtCl2(NCCH2CO2Me)2] 2a with an organonitrile bearing an acceptor group proceeds under mild conditions in dry CH2Cl2 to give the trans-[PtCl2{NH=C(CH2CO2Me)ON=CR1R2}2] 3a-d isomers in moderate yield. The reaction of those ketoximes with trans-[PtCl2(NCCH2Cl)2] 2b under the same experimental conditions gives a 1 : 1 mixture of the isomers trans/cis-[PtCl2{NH=C(CH2Cl)ON=CR1R2}2] 3e-h and 4e-h in moderate to good yield. These reactions are greatly accelerated by microwave irradiation to give, with higher yields (ca. 75%), the same products which were characterized by IR and 1H, 13C and 195Pt NMR spectroscopies, FAB-MS, elemental analysis for the stable trans isomers, and X-ray diffraction analysis (3f). The diiminoester ligand in 3a was liberated upon reaction of the complex with a diphosphine.  相似文献   

10.
Addition of excess R(2)NCN to an aqueous solution of K(2)[PtCl(4)] led to the precipitation of [PtCl(2)(NCNR(2))(2)] (R(2) = Me(2) 1; Et(2) 2; C(5)H(10) 3; C(4)H(8)O, 4) in a cis/trans isomeric ratio which depends on temperature. Pure isomers cis-1-3 and trans-1-3 were separated by column chromatography on SiO(2), while trans-4 was obtained by recrystallization. Complexes cis-1-3 isomerize to trans-1-3 on heating in the solid phase at 110 degrees C; trans-1 has been characterized by X-ray crystallography. Chlorination of the platinum(II) complexes cis-1-3 and trans-1-4 gives the appropriate platinum(IV) complexes [PtCl(4)(NCNR(2))(2)] (cis-5-7 and trans-5-8). The compound cis-6 was also obtained by treatment of [PtCl(4)(NCMe)(2)] with neat Et(2)NCN. The platinum(IV) complex trans-[PtCl(4)(NCNMe(2))(2)] (trans-5) in a mixture of undried Et(2)O and CH(2)Cl(2) undergoes facile hydrolysis to give trans-[PtCl(4)[(H)=C(NMe(2))OH](2)] (9; X-ray structure has been determined). The hydrolysis went to another direction with the cis-[PtCl(4)(NCNR(2))(2)] (cis-5-7) which were converted to the metallacycles [PtCl(4)[NH=C(NR(2))OC(NR(2))=NH]] (11-13) due to the unprecedented hydrolytic coupling of the two adjacent dialkylcyanamide ligands giving a novel (for both coordination and organic chemistry) diimino linkage. Compounds 11-13 and also 14 (R(2) = C(4)H(8)O) were alternatively obtained by the reaction between cis-[PtCl(4)(MeCN)(2)] and neat undried NCNR(2). The structures of complexes 11, 13, and 14 were determined by X-ray single-crystal diffraction. All the platinum compounds were additionally characterized by elemental analyses, FAB mass-spectrometry, and IR and (1)H and (13)C[(1)H] NMR spectroscopies.  相似文献   

11.
The reaction between [Pt(nbe)3] (nbe=norbornene), two equivalents of the phosphines PPh3, PMePh2 or PMe2Ph and 1 equivalent of BCl3 affords the platinum dichloroboryl species [PtCl(BCl2)(PPh3)2], [PtCl(BCl2)(PMePh2)2] and [PtCl(BCl2)(PMe2Ph)2]. All three complexes were characterised by X-ray crystallography and reveal that the boryl group lies trans to the chloride. With PMe3 as the phosphine, the complex [PtCl(BCl2)(PMe3)2] is isolated in high yield as a white crystalline powder although crystals suitable for X-ray crystallography were not obtained. Crystals were obtained of a product shown by X-ray crystallography to be the unusual dinuclear species [Pt2(BCl2)2(PMe3)4(micro-Cl)][BCl4] which reveals an arrangement in which two square planar platinum(II) centres are linked by a single bridging chloride which is trans to a BCl2 group on each platinum centre. The reaction of [PtCl(BCl2)(PMe3)2] with NEt3 or pyridine (py) affords the adducts [PtCl{BCl2(NEt3)}(PMe3)2] and [PtCl{BCl2(py)}(PMe3)2], respectively, both characterised spectroscopically. The reaction between [PtCl(BCl2)(PMe3)2] and either 4 equivalents of NHEt2 or piperidine (pipH) results in the mono-substituted boryl species [PtCl{BCl(NEt2)}(PMe3)2] and [PtCl{BCl(pip)}(PMe3)2], respectively, the former characterised by X-ray crystallography. Treatment of either [PtCl(BCl2)(PMe3)2] (in the presence of excess NEt3) or [PtCl{BCl(NEt2)}(PMe3)2] with catechol affords the B(cat) (cat=catecholate) derivative [PtCl{B(cat)}(PMe3)2] which is also formed in the reaction between [Pt(PMe3)4] and ClB(cat) and also from the slow decomposition of [Pt{B(cat)}2(PMe3)2] in dichloromethane over a period of months. The compound [Pt{B(cat)}2(PMe3)2] was prepared from the reaction between [Pt(PMe3)4] and B2(cat)2.  相似文献   

12.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

13.
CHEN  Jun-Hui ZHOU  Li-Xin 《结构化学》2010,29(10):1536-1546
The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/guanine nucleotides are explored by using B3LYP hybrid functional and IEF-PCM salvation models. For the trans-[Pt(H2O)2(NH3)(pip)]2+ and trans-[PtCl(H2O)(NH3)(pip)]+ complexes,the computed barrier heights in aqueous solution are 13.5/13.5 and 11.6/11.6 kcal/mol from trans-Pt-chloroaqua complex to trans/cis-monoadduct for adenine and guanine,and the corresponding values are 20.7/20.7 and 18.8/18.8 kcal/mol from trans-Pt-diaqua complex to trans/cis-monoadduct for adenine and guanine,respectively. For trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+,the corresponding values are 21.5/21.3 and 19.4/19.4 kcal/mol,and 26.0/26.0 and 20.7/20.8 kal/mol for adenine and guanine,respectively. Our calculations demonstrate that the barrier heights of chloroaqua are lower than the corresponding values of diaqua for adenine and guanine. In addition,the free energies of activation for guanine in aqueous solution are all smaller than that for adenine,which predicts a preference of 1.9 kcal/mol when trans-[PtCl(H2O)(NH3)(pip)]+ and trans-[Pt(H2O)2(NH3)(pip)]2+ are the active agents and ~1.9 and ~ 5.3 kcal/mol when trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+ are the active agents,respectively. For the reaction of trans-Pt-chloroaqua (or diaqua) to cis-monoadduct,we obtain the same transition-state structure as from the reaction of trans-Pt-chloroaqua (or diaqua) to trans-monoadduct,which seems that the trans-Pt-chloroaqua (or diaqua) complex can generate trans-or cis-monoadduct via the same transition-state.  相似文献   

14.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

15.
An N-Alkyl bipyridinium having a polymethylene chain and a bulky aryl group at the end, [4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2]Cl (Cl), reacts with K[PtCl3(dmso)] to produce the Pt complex with the N-alkyl bipyridinium ligand [Cl2(dmso)Pt{4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2}][PtCl3(dmso)] as a 6:1 mixture of trans and cis isomers ([trans-][PtCl3(dmso)] and [cis-][PtCl3(dmso)]). Addition of alpha-cyclodextrin (alpha-CD) to a solution of Cl in dmso-d6/D2O (3:1) forms [2]pseudorotaxane [{4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2}.(alpha-CD)]Cl (Cl) which is equilibrated with Cl and alpha-CD in solution. The reaction of K[PtCl3(dmso)] with Cl affords the [2]rotaxane [trans-Cl2(dmso)Pt{4,4'-bpy-N-(CH2)10OC6H(3)-3,5-tBu2}.(alpha-CD)][PtCl3(dmso)] ([trans-][PtCl3(dmso)]) which contains alpha-CD and [trans-][PtCl3(dmso)] as the cyclic and axis components, respectively. Dissolution of a mixture of [trans-][PtCl3(dmso)], [cis-][PtCl3(dmso)] and alpha-CD in dmso-d6/D2O (3:1) forms a mixture of the rotaxanes containing [trans--d6][PtCl3(dmso)] and [cis--d6][PtCl3(dmso)]. The reaction involves partial dissociation of the bipyridinium from Pt of [trans-][PtCl3(dmso)] or [cis-][PtCl3(dmso)] to yield [PtCl3(dmso)] and formation of pseudorotaxane with alpha-CD, followed by recoordination of the bipyridinium to the Pt. The reversible formation of the Pt-N coordination bond is studied in a dmso solution of the N-butyl compounds [trans-Cl2(dmso)Pt{4,4'-bpy-N-nBu}][PtCl3(dmso)] ([trans-][PtCl3(dmso)]).  相似文献   

16.
The encapsulation of cisplatin by cucurbit[7]uril (Q[7]) and multinuclear platinum complexes linked via a 4,4'-dipyrazolylmethane (dpzm) ligand by Q[7] and cucurbit[8]uril (Q[8]) has been studied by NMR spectroscopy and molecular modelling. The NMR studies suggest that some cisplatin binds in the cucurbituril cavity, while cis-[PtCl(NH3)2(H2O)]+ only binds at the portals. Alternatively, the dpzm-linked multinuclear platinum complexes are quantitatively encapsulated within the cavities of both Q[7] and Q[8]. Upon encapsulation, the non-exchangeable proton resonances of the multinuclear platinum complexes show significant upfield shifts in 1H NMR spectra. The H3/H3* resonances shift upfield by 0.08 to 0.55 ppm, the H5/H5* shift by 0.9 to 1.6 ppm, while the methylene resonances shift by 0.74 to 0.88 ppm. The size of the resonance shift is dependent on the cavity size of the encapsulating cucurbituril, with Q[7] encapsulation producing larger shifts than Q[8]. The upfield shifts of the dpzm resonances observed upon cucurbituril encapsulation indicate that the Q[7] or Q[8] is positioned directly over the dpzm linking ligand. The terminal platinum groups of trans-[{PtCl(NH3)2}2 mu-dpzm]2+ (di-Pt) and trans-[trans-{PtCl(NH3)2}2-trans-{Pt(dpzm)2(NH3)2}]4+ (tri-Pt) provide a barrier to the on and off movement of cucurbituril, resulting in binding kinetics that are slow on the NMR timescale for the metal complex. Although the dpzm ligand has relatively few rotamers, encapsulation by the larger Q[8] resulted in a more compact di-Pt conformation with each platinum centre retracted further into each Q[8] portal. Encapsulation of the hydrolysed forms of di-Pt and tri-Pt is considerably slower than for the corresponding Cl forms, presumably due to the high-energy cost of passing the +2 platinum centres through the cucurbituril portals. The results of this study suggest that cucurbiturils could be suitable hosts for the pharmacological delivery of multinuclear platinum complexes.  相似文献   

17.
Treatment of trans-[PtCl4(RCN)2] (R = Me, Et, Ph, NEt2) with 2 equiv of the amidine PhC(=NH)NHPh in a suspension of MeCN (R = Me), CHCl3 (R = Et, Ph), or in CHCl3 solution (R = NEt2) results in the formation of the imidoylamidine complexes trans-[PtCl4{NH=C(R)N=C(Ph)NHPh}2] (1-4) isolated in good yields (66-84%). The reaction of soluble complexes 3 and 4 with 2 equiv of Ph3P=CHCO2Me in CH2Cl2 (40 degrees C, 5 h) leads to dehydrochlorination resulting in a chelate ring closure to furnish the platinum(IV) chelates [PtCl2{NH=C(R)NC(Ph)=NPh}2] (R = Ph, 5; R = NEt2, 6), accordingly, and the phosphonium salt [Ph3PCH2CO2Me]Cl. Treatment of 5 with 3 equiv of Ph3P=CHCO2Me at 50 degrees C for 5 d resulted in only a 30% conversion to the corresponding Pt(II) complex [Pt{NH=C(NEt2)NC(Ph)=NPh}2] (15). The reduction can be achieved within several minutes, when Ph2PCH2CH2PPh2 in CDCl3 is used. When the platinum(II) complex trans-[PtCl2(RCN)2] is reacted with 2 equiv of the amidine, the imidoylamidinato complexes [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) and [PhC(=NH)NHPh] x HCl (7) are formed. The reaction of trans-[PtCl2(RCN)2] with 4 equiv of the amidine under a prolonged reaction time or treatment of [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) with 2 more equiv of the amidine yields the complex bearing two chelate rings [Pt{NH=C(R)NC(Ph)=NHPh}2] (12-15). The treatment of cis-[PtCl2(RCN)2] (R = Me, Et) with the amidine gives ca. 50-60% yield of [PtCl2{NH=C(R)NHC(Ph)=NHPh}] (16 and 17). All of the platinum compounds were characterized by elemental analyses; FAB mass spectrometry; IR spectroscopy; 1H, 13C{1H}, and 195Pt NMR spectroscopies, and four of them (4, 6, 8, and 15) were also characterized by X-ray crystallography. The coupling of the Pt-bound nitriles and the amidine is metal-mediated insofar as RCN and PhC(=NH)NHPh do not react in the absence of the metal centers in conditions more drastic than those of the observed reactions. The nitrile-amidine coupling reported in this work constitutes a route to the synthesis of imidoylamidine complexes, some of them exhibiting luminescent properties.  相似文献   

18.
Iminoacylation of acetone oxime Me(2)C[double bond, length as m-dash]NOH upon reaction with trans-[PtCl(2)(NCCH(2)CO(2)Me)(2)] and [2 + 3] cycloaddition of acyclic nitrone (-)O(+)N(Me) = C(H)(C(6)H(4)Me-4) to a nitrile ligand in lead to the formation of mono-imine trans-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] [imine-a = NH[double bond, length as m-dash]C(CH(2)CO(2)Me)ON = CMe(2)] and mono-oxadiazoline trans-[PtCl(2)(oxadiazoline-a)(NCCH(2)CO(2)Me)] [oxadiazoline-a = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)ON(Me)C[upper bond 1 end](H)(C(6)H(4)Me-4)] unsymmetric mixed ligand complexes, respectively, as the main products. Reactions of or with acetone oxime , cyclic nitrone (-)O(+)N = CHCH(2)CH(2)C[upper bond 1 end]Me(2) or N,N-diethylhydroxylamine give access, in moderate to good yields, to the unsymmetric mixed ligand oxadiazoline and/or imine complexes trans-[PtCl(2)(oxadiazoline-a)(imine-a)] , trans-[PtCl(2)(oxadiazoline-a)(oxadiazoline-b)] [oxadiazoline-b = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)O[lower bond 1 start]NC[upper bond 1 end](H)CH(2)CH(2)C[lower bond 1 end]Me(2)], trans-[PtCl(2)(imine-a)(imine-b)] [imine-b = NH = C(CH(2)CO(2)Me)ONEt(2)] or trans-[PtCl(2)(imine-a)(oxadiazoline-b)] . The cis mono-imine mixed ligand complex cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] is the major product from the reaction of cis-[PtCl(2)(NCCH(2)CO(2)Me)(2)] with the oxime , while the di-imine compound cis-[PtCl(2)(imine-a)(2)] is a minor product. Reaction of cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] with N,N-diethylhydroxylamine or the cyclic nitrone affords, in good yields, the unsymmetric mixed ligand complexes cis-[PtCl(2)(imine-a)(imine-b)] or cis-[PtCl(2)(imine-a)(oxadiazoline-b)] , respectively. All these complexes were characterized by elemental analyses, IR and (1)H, (13)C and (195)Pt NMR spectroscopies, and FAB(+)-MS. The X-ray structural analysis of trans-[PtCl(2){NH=C(CH(2)CO(2)Me)ON=CMe(2)}(NCCH(2)CO(2)Me)] is also reported.  相似文献   

19.
The coupling between tetramethylguanidine, HN=C(NMe2)2, and coordinated organonitriles in the platinum(II) complexes cis/trans-[PtCl2(RCN)2] (R = Me, Et, Ph) proceeds rapidly under mild conditions to afford the diimino compounds containing two N-bound monodentate 1,3-diaza-1,3-diene ligands [PtCl2{NH=C(R)N=C(NMe2)2}2] (R = Et, trans-1; R = Ph, trans-2; R = Me, cis-3; R = Et, cis-4), and this reaction is the first observation of metal-mediated nucleophilic addition of a guanidine to ligated nitrile. Complexes 1-4 were characterized by elemental analyses (C, H, N), X-ray diffraction, FAB mass spectrometry, IR, and 1H and 13C{1H} NMR spectroscopies; assignment of signals from E/Z-forms of 1,3-diaza-1,3-diene ligands and verification of routes for their Z right harpoon over left harpoon E isomerization in solution were performed using 2D 1H,1H-COSY, 1H,13C-HETCOR, and 1D NOE NMR experiments. The newly formed and previously unknown 1,3-diaza-1,3-dienes NH=C(R)N=C(NMe2)2 were liberated from the platinum(II) complexes [PtCl2{NH=C(R)N=C(NMe2)2}2] (1-3) by substitution with 2 equiv of 1,2-bis-(diphenylphosphino)ethane (dppe) to give the uncomplexed HN=C(R)N=C(NMe2)2 species (5-7) in solution and the solid [Pt(dppe)2](Cl)2. The former were utilized in situ, after filtration of the latter, in the reaction with 1,3-di-p-tolylcarbodiimide, (p-tol)N=C=N(tol-p), in CDCl3 to generate (6E)-N,N-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amines) (8-10) due to the [4 + 2]-cycloaddition accompanying elimination of HNMe2. The formulation of 8-10 is based on ESI-MS, 1H, 13C{1H} NMR, and X-ray crystal structures determined for 9 and 10. The reaction of 1,3-diaza-1,3-dienes with 1,3-di-p-tolylcarbodiimide, described in this article, constitutes a novel synthetic approach to a useful class of heterocyclic species like 1,6-dihydro-1,3,5-triazines.  相似文献   

20.
Trans complexes such as trans-[PtCl(2)(NH(3))(2)] have historically been considered therapeutically inactive. The use of planar ligands such as pyridine greatly enhances the cytotoxicity of the trans geometry. The complexes trans-[PtCl(R'R'SO)(A)(2)]NO(3) (R'R'SO = substituted sulfoxides such as dimethyl (Me(2)SO), methyl benzyl (MeBzSO), and methyl phenyl sulfoxide (MePhSO) and A = NH(3), pyridine (py) and 4-methylpyridine or picoline (pic)) were prepared for comparison of the chemical reactivity between ammine and pyridine ligands. The X-ray crystal structure determination for trans-[PtCl(Me(2)SO)(py)(2)]NO(3) confirmed the geometry with S-bound Me(2)SO. The crystals are orthorhombic, space group P2(1)2(1)2(1), with cell dimensions a = 7.888(2) A, b = 14.740(3) A, c =15.626(5) A, and Z = 4. The geometry around the platinum atom is square planar with l(Pt-Cl) = 2.304(4) A, l(Pt-S) = 2.218(5) A, and l(Pt-N) = 2.03(1) and 2.02(1) A. Bond angles are normal with Cl-Pt-S = 177.9(2) degrees, Cl-Pt-N(1) = 88.0(4) degrees, Cl-Pt-N(2) = 89.3(5) degrees, S-Pt-N(1) = 93.8(4) degrees, S-Pt-N(2) = 88.9(4) degrees, and N(1)-Pt-N(2) = 177.2(6) degrees. The intensity data were collected with Mo Kalpha radiation with lambda = 0.710 69 A. Refinement was by full-matrix least-squares methods to a final R value of 3.80%. Unlike trans-[PtCl(2)(NH(3))(2)], trans-[PtCl(2)(A)(2)] (A = py or pic) complexes do not react with Me(2)SO. The solvolytic products of cis-[PtCl(2)(A)(2)] (A = py or pic) were characterized. Studies of displacement of the sulfoxide by chloride were performed using HPLC. The sulfoxide was displaced faster for the pyridine complex relative to the ammine complex. Chemical studies comparing the reactivity of trans-[PtCl(R'R'SO)(amine)(2)]NO(3) with a model nucleotide, guanosine 5'-monophosphate (GMP), showed that the reaction gave two principal products: the species [Pt(R'R'SO)(amine)(2)(N7-GMP)], which reacts with a second equivalent of GMP, forming [Pt(amine)(2)(N7-GMP)(2)]. The reaction pathways were different, however, for the pyridine complexes in comparison to the NH(3) species, with sulfoxide displacement again being significantly faster for the pyridine case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号