首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first presentation of the intra- and intermolecular mechanisms of the C-N interconversions of transition metal alpha-cyanocarbanions is described. A pair of N- and C-bound isomers of isonitrile complex Ru+Cp(NCCH-SO2Ph)(PPh3)(CN-t-Bu) (1) and RuCp[CH(CN)SO2Ph](PPh3)(CN-t-Bu) (2) was synthesized for the mechanistic studies on the N-to-C isomerizations. Structural characterization by X-ray diffractions of 1 and 2 indicated their typical zwitterionic and alpha-metalated structures. The kinetic studies on the irreversible isomerization of 1 to 2 in benzene-d6 at 333-348 K were carried out using 1H NMR spectroscopy, affording the first-order rate constants k1 and the activation parameters DeltaH = 107 +/- 2 kJ.mol-1 and DeltaS = -22 +/- 5 J.K-1.mol-1. The almost identical values of k1 were obtained upon similar treatment of 1 with 4 equiv of external ligands such as PPh3, CH3CN, and t-BuNC at 333 K, indicating that the N-to-C isomerization proceeds in an intramolecular manner without dissociation of a ligand. As a model system for the C-to-N isomerization, the irreversible transformation of RuCp[CH(CN)SO2Ph](PPh3)2 (3) to Ru+Cp(NCCH-SO2Ph)(PPh3)2 (4) was investigated under various reaction conditions. The reaction of 3 at room temperature in THF affords the coordination dimers (RRu*,SC*,RRu*,SC*)-{RuCp[CH(CN)SO2Ph](PPh3)}2 (5) stereoselectively, and its distorted mu2-C,N-bound structure was determined by X-ray analysis. The reaction profiles for the isomerization of 3 includes the generation- and temperature-dependent decays of dimeric species 5 and its diastereomer 6, which strongly suggests that the intra- and intermolecular pathways are included in the C-to-N isomerization. The intramolecular process of the C-to-N isomerization of 3 has been confirmed by the kinetic studies on the isomerization of 3 with excess amount of PPh3 in benzene-d6 at 333-348 K which afford the first-order kinetics with the activation parameters of DeltaH = 121 +/- 1 kJ.mol-1 and DeltaS = 42 +/- 4 J.K-1.mol-1. Treatment of 5 with PPh3 in boiling benzene gives rise to the quantitative formation of N-bound complex 4. The controlled kinetic experiments on the cleavage of 5 with PPh3 have concluded that the cleavage of 5 with PPh3 proceeds via simultaneous C-Ru and N-Ru bond scissions, indicating the temperature-dependent participation of intermolecular process in the C-to-N isomerization of 3.  相似文献   

2.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

3.
The reactions of acrylonitrile (AN) with "L(2)PdMe+" species were investigated; (L(2) = CH(2)(N-Me-imidazol-2-yl)(2) (a, bim), (p-tolyl)(3)CCH(N-Me-imidazol-2-yl)(2) (b, Tbim), CH(2)(5-Me-2-pyridyl)(2) (c, CH(2)py'(2)), 4,4'-Me(2)-2,2'-bipyridine (d), 4,4'-(t)Bu(2)-2,2'-bipyridine (e), (2,6-(i)Pr(2)-C(6)H(3))N=CMeCMe=N(2,6-(i)Pr(2)-C(6)H(3)) (f)). [L(2)PdMe(NMe(2)Ph)][B(C(6)F(5))(4)] (2a-c) and [{L(2)PdMe}(2)(mu-Cl)][B(C(6)F(5))(4)] (2d-f) react with AN to form N-bound adducts L(2)Pd(Me)(NCCH=CH(2))(+) (3a-f). 3a-e undergo 2,1 insertion to yield L(2)Pd{CH(CN)Et}+, which form aggregates [L(2)Pd{CH(CN)Et}](n)(n)(+) (n = 1-3, 4a-e) in which the Pd units are proposed to be linked by PdCHEtCN- - -Pd bridges. 3f does not insert AN at 23 degrees C. 4a-e were characterized by NMR, ESI-MS, IR and derivatization to L(2)Pd{CH(CN)Et}(PR(3))+ (R = Ph (5a-e), Me (6a-c)). 4a,b react with CO to form L(2)Pd{CH(CN)Et}(CO)+ (7a,b). 7a reacts with CO by slow reversible insertion to yield (bim)Pd{C(=O)CH(CN)Et}(CO)+ (8a). 4a-e do not react with ethylene. (Tbim)PdMe+ coordinates AN more weakly than ethylene, and AN insertion of 3b is slower than ethylene insertion of (Tbim)Pd(Me)(CH(2)=CH(2))(+) (10b). These results show that most important obstacles to insertion polymerization or copolymerization of AN using L(2)PdR+ catalysts are the tendency of L(2)Pd{CH(CN)CH(2)R}+ species to aggregate, which competes with monomer coordination, and the low insertion reactivity of L(2)Pd{CH(CN)CH(2)R}(substrate)+ species.  相似文献   

4.
The salts [NEt4][Ru(CN)(CO)2L(o-O2C6Cl4)] {L=PPh3 or P(OPh)3}, which undergo one-electron oxidation at the catecholate ligand to give neutral semiquinone complexes [Ru(CN)(CO)2L(o-O2C6Cl4)], react with the dimers [{Ru(CO)2L(micro-o-O2C6Cl4)}2] {L=PPh3 or P(OPh)3} to give [NEt4][(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] {L or L'=PPh3 or P(OPh)3}. The cyanide-bridged binuclear anions are, in turn, reversibly oxidised to isolable neutral and cationic complexes [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)] and [(o-O2C6Cl4)L(OC)2Ru(micro-CN)Ru(CO)2L'(o-O2C6Cl4)]+ which contain one and two semiquinone ligands respectively. Structural studies on the redox pair [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- and [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)] confirm that the C-bound Ru(CO)2(o-O2C6Cl4) fragment is oxidised first. Uniquely, [(o-O2C6Cl4){(PhO)3P}(OC)2Ru(micro-CN)Ru(CO)2(PPh3)(o-O2C6Cl4)]- is oxidised first at the N-bound fragment, indicating that it is possible to control the site of electron transfer by tuning the co-ligands. Crystallisation of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(micro-CN)Ru(CO)2{P(OPh)3}(o-O2C6Cl4)] resulted in the formation of an isomer in which the P(OPh)3 ligand is cis to the cyanide bridge, contrasting with the trans arrangement of the X-Ru-L fragment in all other complexes of the type RuX(CO)2L(o-O2C6Cl4).  相似文献   

5.
Reactions between HC triple bond CC triple bond CSiMe3 and several ruthenium halide precursors have given the complexes Ru(C triple bond CC triple bond CSiMe3)(L2)Cp'[Cp'= Cp, L = CO (1), PPh3 (2); Cp' = Cp*, L2= dppe (3)]. Proto-desilylation of 2 and 3 have given unsubstituted buta-1,3-diyn-1-yl complexes Ru(C triple bond CC triple bond CH)(L2)Cp'[Cp'= Cp, L = PPh3 (5); Cp'= Cp*, L2 = dppe (6)]. Replacement of H in 5 or 6 with Au(PR3) groups was achieved in reactions with AuCl(PR3) in the presence of KN(SiMe3)2 to give Ru(C triple bond CC triple bond CAu(PR3)](L2)Cp'[Cp' = Cp, L = PPh3, R = Ph (7); Cp' = Cp*, L2= dppe, R = Ph (8), tol (9)]. The asymmetrically end-capped [Cp(Ph3P)2Ru]C triple bond CC triple bond C[Ru(dppe)Cp*] (10) was obtained from Ru(C triple bond CC triple bond CH)(dppe)Cp* and RuCl(PPh3)2Cp. Single-crystal X-ray structural determinations of and are reported, with a comparative determination of the structure of Fe(C triple bond CC triple bond CSiMe3)(dppe)Cp* (4), and those of a fifth polymorph of [Ru(PPh3)2Cp]2(mu-C triple bond CC triple bond C) (12), and [Ru(dppe)Cp]2(mu-C triple bond CC triple bond C) (13).  相似文献   

6.
Two series of stable cyanide-bridged linkage isomers, namely [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] (XY = CN or NC, L = CNBu(t) or CNXyl) and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC-CPh)Tp'] {M = Mo or W, L = PPh3 or P(OPh)3, Tp' = hydrotris(3,5-dimethylpyrazolyl)borate} have been synthesised; pairs of isomers are distinguishable by IR spectroscopy and cyclic voltammetry. The molecular structure of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-NC)Mo(CO)(PhC-CPh)Tp'] has the catecholate-bound ruthenium atom cyanide-bridged to a Mo(CO)(PhC[triple band]CPh)Tp' unit in which the alkyne acts as a four-electron donor; the alignment of the alkyne relative to the Mo-CO vector suggests the fragment (CN)Ru(CO)2(PPh3)(o-O2C6Cl4) acts as a pi-acceptor ligand. The complexes [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)Mn(NO)L(eta-C5Me5)] undergo three sequential one-electron oxidation processes with the first and third assigned to oxidation of the ruthenium-bound o-O2C6Cl4 ligand; the second corresponds to oxidation of Mn(I) to Mn(n). The complexes [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] are also first oxidised at the catecholate ligand; the second oxidation, and one-electron reduction, are based on the M(CO)(PhC[triple band]CPh)Tp' fragment. Chemical oxidation of [(o-O,C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] with [Fe(eta-C5H4COMe)(eta-C5H5)][BF4], or of [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] with AgBF4, gave the paramagnetic monocations [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)]+ and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp']+, the ESR spectra of which are consistent with ruthenium-bound semiquinone ligands. Linkage isomers are distinguishable by the magnitude of the 31P hyperfine coupling constant; complexes with N-bound Ru(o-O2C6Cl4) units also show small hyperfine coupling to the nitrogen atom of the cyanide bridge.  相似文献   

7.
Complex 3, [Ru(eta2-BH4)(CO)(Et)L2] (L = PMe2Ph) can be converted by nucleophiles L' {a, PMe2Ph; b, P(OMe)3; c, Me3CNC; d, CO} to alkyl and acyl complexes [Ru(eta1-BH4)(CO)(Et)L2L'] (4a), [Ru(eta2-BH4)(COEt)L2L'] (5a-d), and [Ru(eta1-BH4)(COEt)L2L'2] (7d and isomers 7c and 10c). Deprotection can then be achieved under conditions mild enough to allow study of the resulting alkyl hydride complexes [Ru(CO)(Et)HL2L'] (1a, 1b) and acyl hydride complexes [Ru(COEt)HL2L'2] (8c, 8d) prior to elimination of ethane and propanal respectively, with formation of ruthenium(0) complexes [Ru(CO)L2L'2] (6a, 6b, 6d). With Me3CNC, however, the final product is (depending on the solvent used) [Ru(CNCMe3)2{C(H)NCMe3}(COEt)L2] (9c) or [Ru(CNCMe3)3(COEt)L2]+ (11c). Successive treatment of [Ru(eta2-BH4)(CO)HL2], , with ethene and then CO yields propanal, but turning this into a catalytic cycle is hindered by the greater readiness of to yield propanal non-catalytically (reacting with CO) than catalytically (reacting with H2).  相似文献   

8.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

9.
Novel dicyanido-bridged dicationic RuIIISSRuIII complexes [{Ru(P(OCH3)3)2}2(mu-S2)(mu-X)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (4, X=Cl, Br) were synthesized by the abstraction of the two terminal halide ions of [{RuX(P(OCH3)3)2}2(mu-S2)(mu-X)2] (1, X=Cl, Br) followed by treatment with m-xylylenedicyanide. 4 reacted with 2,3-dimethylbutadiene to give the C4S2 ring-bridged complex [{Ru(P(OCH3)3)2}2{mu-SCH2C(CH3)=C(CH3)CH2S}(mu-X)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (6, X=Cl, Br). In addition, 4 reacted with 1-alkenes in CH3OH to give alkenyl disulfide complexes [{Ru(P(OCH3)3)2}2{mu-SS(CH2C=CHR)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3) (7: R=CH2CH3, 9: R=CH2CH2CH3) and alkenyl methyl disulfide complexes [{Ru(P(OCH3)3)2}2{mu-S(CH3)S(CH2C=HR)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (8: R=CH2CH3, 10: R=CH2CH2CH3) via the activation of an allylic C-H bond followed by the elimination of H+ or condensation with CH3OH. Additionally, the reaction of 4 with 3-penten-1-ol gave [{Ru(P(OCH3)3)2}2{mu-SS(CH2C=CHCH2OH)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3) (11) via the elimination of H+ and [{Ru(P(OCH3)3)2}2(mu-SCH2CH=CHCH2S)(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (12) via the intramolecular elimination of a H2O molecule. 12 was exclusively obtained from the reaction of 4 with 4-bromo-1-butene.  相似文献   

10.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

11.
[Ru(II)(por)(PH(n)Ph(3-n))2], [Os(II)(por)(CO)(PH(n)Ph(3-n))] (n=1, 2), and [Os(II)(F20-tpp){P(OH)Ph2}(PHPh2)] (F20-tpp=5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) were prepared from the reaction of [M(II)(por)(CO)] (M=Ru, Os) or [Os(VI)(por)O2] with the respective primary/secondary phosphane and characterized by 1H NMR, 31P NMR, UV/Vis, and IR spectroscopy, mass spectrometry, and elemental analysis. The reaction of [Os(VI)(por)O2] with PHPh2 also gave minor amounts of [Os(II)(por){P(OH)Ph2}2]. [Ru(II)(F20-tpp)(PH2Ph)2] exhibits a remarkable stability toward air and shows a reversible metal-centered oxidation couple at E(1/2)=0.39 V versus [Cp2Fe](+/0) in the cyclic voltammogram. The structures of [Ru(II)(F20-tpp)(PH2Ph)2] x 2CH2Cl2, [Ru(II)(4-Cl-tpp)(PHPh2)2] x 2CH2Cl2 (4-Cl-tpp=5,10,15,20-tetrakis(p-chlorophenyl)porphyrinato dianion), [Ru(II)(F20-tpp)(PHPh2)2], and [Os(II)(F20-tpp){P(OH)Ph2}2] were determined by X-ray crystallography and feature Ru-P distances of 2.3397(11)-2.3609(9) A and an Os-P distance of 2.369(2) A.  相似文献   

12.
13.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

14.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

15.
The alpha-C-H bonds of 3-methyl-2-butanone, 3-pentanone, and 2-methyl-3-pentanone were activated on the sulfur center of the disulfide-bridged ruthenium dinuclear complex [(RuCl(P(OCH3)3)2)2(mu-S2)(mu-Cl)2] (1) in the presence of AgX (X = PF6, SbF6) with concomitant formation of C-S bonds to give the corresponding ketonated complexes [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHR1COR2)(Ru(CH3CN)3(P(OCH3)3)2)]X3 ([5](PF6)3, R1 = H, R2 = CH(CH3)2, X = PF6; [6](PF6)3, R1 = CH3, R2 = CH2CH3, X = PF6; [7](SbF6)3, R1 = CH3, R2 = CH(CH3)2, X = SbF6). For unsymmetric ketones, the primary or the secondary carbon of the alpha-C-H bond, rather than the tertiary carbon, is preferentially bound to one of the two bridging sulfur atoms. The alpha-C-H bond of the cyclic ketone cyclohexanone was cleaved to give the complex [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SS-1- cyclohexanon-2-yl)(Ru(CH3CN)3(P(OCH3)3)2)](SbF6)3 ([8](SbF6)3). And the reactions of acetophenone and p-methoxyacetophenone, respectively, with the chloride-free complex [(Ru(CH3CN)3(P(OCH3)3)2)2(mu-S2)]4+ (3) gave [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCH2COAr)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([9](CF3SO3)3, Ar = Ph; [10](CF3SO3)3, Ar = p-CH3OC6H4). The relative reactivities of a primary and a secondary C-H bond were clearly observed in the reaction of butanone with complex 3, which gave a mixture of two complexes, i.e., [(Ru(CH3CN)2(P(OCH3)3)20(mu-SSCH2COCH2CH3)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([11](CF3SO3)3) and [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHCH3COCH3)(Ru(CH3CN)3(P(OCH3)2)](CF3SO3)3 ([12](CF3SO3)3), in a molar ratio of 1:1.8. Complex 12 was converted to 11 at room temperature if the reaction time was prolonged. The relative reactivities of the alpha-C-H bonds of the ketones were deduced to be in the order 2 degrees > 1 degree > 3 degrees, on the basis of the consideration of contributions from both electronic and steric effects. Additionally, the C-S bonds in the ketonated complexes were found to be cleaved easily by protonation at room temperature. The mechanism for the formation of the ketonated disulfide-bridged ruthenium dinuclear complexes is as follows: initial coordination of the oxygen atom of the carbonyl group to the ruthenium center, followed by addition of an alpha-C-H bond to the disulfide bridging ligand, having S=S double-bond character, to form a C-S-S-H moiety, and finally completion of the reaction by deprotonation of the S-H bond.  相似文献   

16.
The reactions of Na[C(5)(CN)(5)] (Na[1]) with group 11 phosphine complexes [(P)(n)MCl] (M = Cu, Ag, Au, P = Ph(3)P; M = Cu, P = dppe (Ph(2)PCH(2)CH(2)PPh(2))] give a range of compounds containing the pentacyanocyclopentadienide ligand, [C(5)(CN)(5)](-) (1). The new complexes [(Ph(3)P)(2)M{1}](2) [M = Cu (3); M = Ag (5)], [(Ph(3)P)(3)Ag{1}] (4), [(dppe)(3)Cu(2){1}(2)] (6) and [Au(PPh(3))(2)][1] (7) include the first complete series of group 11 complexes of any cyclopentadienide ligand to be structurally characterised.  相似文献   

17.
A nitrosylruthenium alkynyl complex of TpRuCl(C[triple bond]CPh)(NO)(1a) was reacted with PPh3 in the presence of HBF4.Et2O at room temperature to give a beta-phosphonio-alkenyl complex (E)-[TpRuCl{CH=C(PPh3)Ph}(NO)]BF4(2.BF4). On the other hand, for gamma-hydroxyalkynyl complexes TpRuCl{C[triple bond]CC(R)2OH}(NO)(R = Me (1b), Ph (1c), H (1d)), similar treatments with PPh3 were found to give gamma-phosphonio-alkynyl [TpRuCl{C[triple bond]CC(Me)2PPh3}(NO)]BF4(3.BF4),alpha-phosphonio-allenyl [TpRuCl{C(PPh3)=C=CPh2}(NO)]BF4(4.BF4), and a novel product of gamma-hydroxy-beta-phosphonio-alkenyl (E)-[TpRuCl{CH=C(PPh3)CH2OH}(NO)]BF4(5.BF4), respectively. Dominant factors for the selectivity in affording 3-5 were associated with the steric congestion and electronic properties at the gamma-carbons, along with those around the metal fragment. From the bis(alkynyl) complex TpRu(C[triple bond]CPh)2(NO)6, a bis(beta-phosphonio-alkenyl)(E,E)-[TpRu{CH=C(PPh3)Ph}2(NO)](BF4)2{7.(BF4)2} was produced at room temperature. However, similar reactions at 0 degrees C gave an alkynyl beta-phosphonio-alkenyl complex (E)-[TpRu(C[triple bondCPh){CH=C(PPh3)Ph}(NO)]BF4(8.BF4) as a sole product, of which additional hydration in the presence of HBF4.Et2O afforded a [small beta]-phosphonio-alkenyl ketonyl (E)-[TpRu{CH2C(O)Ph}{CH=C(PPh3)Ph}(NO)]BF(.9BF4). Five complexes, 2-5 and 7 were crystallographically characterized.  相似文献   

18.
The elongated dihydrogen complex [Os{C6H4C(O) CH3}(eta2-H2)(H2O)(PiPr3)2]BF4 reacts with phenylacetylene and HBF4.OEt2 to give the unsaturated compound [Os{(E)-CH=CHPh}(CCPh)(CCH2Ph)(PiPr3)2]BF4 containing alkenyl, alkynyl, and carbyne ligands. The addition of sodium chloride to this compound leads to the cyclic allene Os{=C=C(Ph)CH(Ph)CH=C(CH2Ph)}Cl(PiPr3)2, which is the first isometallabenzene with the structure of a 1,2,4-cyclohexatriene.  相似文献   

19.
The reactivity of two β-diketiminate coordinated magnesium(I) dimers, [LMgMgL], L=[(RNCMe)(2) CH](-) , R=C(6) H(3) iPr(2) -2,6 ((Dip) Nacnac(-) ) or mesityl ((Mes) Nacnac(-) ), towards a series of isonitriles and nitriles have been examined. Reactions with the isonitriles, RN?C: (R=tBu or C(6) H(3) Me(2) -2,6 (Xyl)), led to reductive C?C couplings and the formation of [{((Dip) Nacnac)Mg}(2) {μ-(XylN=C-)(2) }] and [{((Mes) Nacnac)Mg}(2) {μ-(tBuN=C-)(2) }], or a reductive N?C cleavage and the generation of the magnesium cyanide complex, [{((Dip) Nacnac)Mg(μ-CN)}(3) ]. Reactions of the magnesium dimers with benzonitrile, PhC?N, afforded the C?C-coupled products, [((Dip) Nacnac)Mg[μ-{N=C(Ph)-}(2) ]Mg(NCPh)((Dip) Nacnac)], and [{{((Mes) Nacnac)Mg}(2) [μ-{N=C(Ph)-}(2) ]}(2) ], whereas the reductive C?C cleavage of tBuC?N gave rise to a mixture of [((Dip) Nacnac)Mg(tBu)(NCtBu)] and [{((Dip) Nacnac)Mg(μ-CN)}(3) ]. In contrast, a combination of net nitrile isomerization and C?C coupling processes was involved in the reduction of Me(3) SiC?N, which yielded [{((Dip) Nacnac)Mg}(2) {μ-(Me(3) SiN=C-)(2) }]. All new compounds were crystallographically and spectroscopically characterized. The outcomes of the reported reactions were found to be dependent upon both the steric bulk of the magnesium(I) reagent, and the nature of the isonitrile/nitrile substituent. This combined with a high degree of selectivity for the reactions, indicates that magnesium(I) dimers may find use by organic and organometallic chemists as viable alternatives to currently available reducing agents that are utilized for the reduction of unsaturated organic substrates.  相似文献   

20.
Thermolysis of [Ru3(CO)9(mu3-NOMe)(mu3-eta2-PhC2Ph)] (1) with two equivalents of [Cp*Co(CO)2] in THF afforded four new clusters, brown [Ru5(CO)8(mu-CO)3(eta5-C5Me5)(mu5-N)(mu4-eta2-PhC2Ph)] (2), green [Ru3Co2(CO)7(mu3-CO)(eta5-C5Me5)2(mu3-NH)[mu4-eta8-C6H4-C(H)C(Ph)]] (3), orange [Ru3(CO)7(mu-eta6-C5Me4CH2)[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (4) and pale yellow [Ru2(CO)6[mu-eta3-PhC2(Ph)C(O)N(OMe)]] (5). Cluster 2 is a pentaruthenium mu5-nitrido complex, in which the five metal atoms are arranged in a novel "spiked" square-planar metal skeleton with a quadruply bridging alkyne ligand. The mu5-nitrido N atom exhibits an unusually low frequency chemical shift in its 15N NMR spectrum. Cluster 3 contains a triangular Ru2Co-imido moiety linked to a ruthenium-cobaltocene through the mu4-eta8-C6H4C(H)C(Ph) ligand. Clusters 4 and 5 are both metallapyrrolidone complexes, in which interaction of diphenylacetylene with CO and the NOMe nitrene moiety were observed. In 4, one methyl group of the Cp* ring is activated and interacts with a ruthenium atom. The "distorted" Ru3Co butterfly nitrido complex [Ru3Co(CO)5(eta5-C5Me5)(mu4-N)(mu3-eta2-PhC2Ph)(mu-I)2I] (6) was isolated from the reaction of 1 with [Cp*Co(CO)I2] heated under reflux in THF, in which a Ru-Ru wing edge is missing. Two bridging and one terminal iodides were found to be placed along the two Ru-Ru wing edges and at a hinge Ru atom, respectively. The redox properties of the selected compounds in this study were investigated by using cyclic voltammetry and controlled potential coulometry. 15N magnetic resonance spectroscopy studies were also performed on these clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号