首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical study is presented for the problem of unsteady hydromagnetic heat and mass transfer for a micropolar fluid bounded by semi-infinite vertical permeable plate in the presence of first-order chemical reaction, thermal radiation and heat absorption. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with a time-dependent suction velocity. The basic partial differential equations are reduced to a system of nonlinear ordinary differential equations which are solved analytically using perturbation technique. Numerical calculations for the analytical expressions are carried out and the results are shown graphically. The effects of the various dimensionless parameters related to the problem on the velocity, angular velocity, temperature and concentration fields are discussed in detail.  相似文献   

2.
Heat transfer in a time-dependent flow of incompressible viscoelastic Maxwell fluid induced by a stretching surface has been investigated under the effects of heat radiation and chemical reaction. The magnetic field is applied perpendicular to the direction of flow. Velocity, temperature, and concentration are functions of z and t for the modeled boundary-layer flow problem. To have a hereditary effect, the time-fractional Caputo derivative is incorporated. The pressure gradient is assumed to be zero. The governing equations are non-linear, coupled and Boussinesq approximation is assumed for the formulation of the momentum equation. To solve the derived model numerically, the spatial variables are discretized by employing the finite element method and the Caputo-time derivatives are approximated using finite difference approximations. It reveals that the fractional derivative strengthens the flow field. We also observe that the magnetic field and relaxation time suppress the velocity. The lower Reynolds number enhances the viscosity and thus motion weakens slowly. The velocity initially decreases with increasing unsteadiness parameter δ. Temperature is an increasing function of heat radiation parameter but a decreasing one for the volumetric heat absorption parameter. The increasing value of the chemical reaction parameter decreases concentration. The Prandtl and Schmidt numbers adversely affect the temperature and concentration profiles respectively. The fractional parameter changes completely the velocity profiles. The Maxwell fluids modeled by the fractional differential equations flow faster than the ordinary fluid at small values of the time t but become slower for large values of the time t.  相似文献   

3.
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption.Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method(HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.  相似文献   

4.
A three-dimensional mathematical model is developed to examine the flow of nonlinear thermal radiation Oldroyd-B nanofluid past a bidirectional linearly stretched surface in a porous medium. The flow is induced by temperature dependent thermal conductivity, chemical reaction and convective heat and mass conditions. Novel characteristics of Brownian motion and thermophoresis are accompanied by magnetohydrodynamic and heat generation/absorption. Self-similar transformations are employed to convert the system of nonlinear partial differential equations to a system of ordinary differential equations with high nonlinearity and are solved by strong analytic technique named as Homotopy Analysis method (HAM). Effects of varied arising parameters on involved distributions are reflected through graphical illustrations. From this study, it is perceived that strong magnetic field hinders the fluid's motion and leads to rise in temperature that eventually lowers heat transfer rate from the surface. Further, decrease in heat transfer rate is also observed for enhanced values of thermal radiation parameter. To validate our results, a comparison with already published paper in limiting case is also given and results are found in excellent oncurrence; hence reliable results are being presented.  相似文献   

5.
This article numerically examines the boundary layer flow due to an exponentially stretching surface in the presence of an applied magnetic field. Casson fluid model is used to characterize the non-Newtonian fluid behavior. The flow is subjected to suction/blowing at the surface. Analysis is carded out in presence of thermal radiation and prescribed surface heat flux. In this study, an exponential order stretching velocity and prescribed exponential order surface heat flux are accorded with each other. The governing partial differential equations are first converted into nonlinear ordinary differential equations by using appropriate transformations and then solved numerically. The effect of increasing values of the Casson parameter is to suppress the velocity field. However the temperature is enhanced when Casson parameter increases. It is found that the skin-friction coefficient increases with increasing values of suction parameter. Temperature also increases for large values of power index n in both suction and blowing cases at the boundary. It is observed that the thermal radiation enhances the effective thermal diffusivity and hence the temperature rises.  相似文献   

6.
In this study, the effects of variable fluid properties on heat transfer in MHD Casson fluid melts over a moving surface in a porous medium in the presence of the radiation are examined. The relevant similarity transformations are used to reduce the governing equations into a system of highly nonlinear ordinary differential equations and those are then solved numerically using the Runge–Kutta–Fehlbergmethod. The effects of different controlling parameters, namely, the Casson parameter,melting and radiation parameters, Prandtl number,magnetic field, porosity, viscosity and the thermal conductivity parameters on flow and heat transfer are investigated. The numerical results for the dimensionless velocity and temperature as well as friction factor and reducedNusselt number are presented graphically and discussed. It is found that the rate of heat transfer increases as the Casson parameter increases.  相似文献   

7.
The influence of radiation and chemical reaction on a natural convective MHD flow through a porous medium bounded by a vertical infinite surface in the presence of transverse magnetic field is studied. The basic equations governing the flow, heat and mass transfer are reduced to a set of ordinary differential equations by appropriate transformations. Governing equations are solved by perturbation technique for velocity, temperature and concentration, and that has been presented graphically for different values of involved parameters. It is observed that effects of magnetic parameter and radiation parameter in the flow field affect the flow significantly.  相似文献   

8.
The aim of this research is to analyze the effects of mass transfer on second grade fluid flow subjected to the heat transfer incorporated with the relaxation time to reach the state of equilibrium on or after the state of upheaval. A new heat model namely Cattaneo–Christov heat flux comprising the relaxation time is employed instead of very commonly used mundane model based on classical theory of heat flux. Flow is considered towards stretching cylinder in the existence of external magnetic field. Suitable transformations are first used to deduce the momentum, heat and concentration equations and are then solved analytically. The effects of physical quantities such as fluid parameter, magnetic field, Schmidt number, relaxation time, curvature parameter, Prandtl number and chemical reaction on momentum, temperature and concentration profile are examined graphically whereas for validation of results convergence analysis along with residual error are obtained numerically. A comparison of obtained results is also given with the existing literature as a limiting case of reported problem and are found an excellent agreement. The temperature profile indicates thinning effect for higher values of Prandtl number and relaxation time. It is also noted that the velocity increases with increasing values of fluid parameter whereas it declines for the case of magnetic field. This study can be used an application of central heating system and to measure the fast chemical reactions rates.  相似文献   

9.
A mathematical model is developed for steady state magnetohydrodynamic (MHD) heat and mass transfer flow along an inclined surface in an ocean MHD energy generator device with heat generation and thermo-diffusive (Soret) effects. The governing equations are transformed into nonlinear ordinary differential equations with appropriate similarity variables. The emerging two-point boundary value problem is shown to depend on six dimensionless thermophysical parameters - magnetic parameter, Grashof number, Prandtl number, modified Prandtl number, heat source parameter and Soret number in addition to plate inclination. Numerical solutions are obtained for the nonlinear coupled ordinary differential equations for momentum, energy and salinity (species) conservation, numerically, using the Nachtsheim–Swigert shooting iteration technique in conjunction with the Runge–Kutta sixth order iteration scheme. Validation is achieved with Nakamura's implicit finite difference method. Further verification is obtained via the semi-numerical Homotopy analysis method (HAM). With an increase in magnetic parameter, skin friction is depressed whereas it generally increases with heat source parameter. Salinity magnitudes are significantly reduced with increasing heat source parameter. Temperature gradient is decreased with Prandtl number and salinity gradient (mass transfer rate) is also reduced with modified Prandtl number. Furthermore, the flow is decelerated with increasing plate inclinations and temperature also depressed with increasing thermal Grashof number.  相似文献   

10.
Several boundary layer flowswith heat and mass transfer problems do arise from a pebble bed nuclear reactor system. In this study, we examine the combined effects of variable thermal conductivity, thermal diffusion, diffusion thermo, heat source, chemical reaction and fluid rotation on hydromagnetic mixed convective flow with heat and mass transfer over a vertical plate embedded in porous medium. The governing partial differential equations have been transformed into a system of ordinary differential equations by employing the similarity transformation and solved numerically using the Runge–Kutta–Fehlberg method with a shooting technique. Pertinent results obtained are presented graphically and in tabular form with respect to variation in various thermophysical parameters. A comparison of the special case of this study with the previously published work shows excellent agreement.  相似文献   

11.
The phenomena of heat and mass transfer during the flow of non-Newtonian transfer are amongst the core subjects in mechanical sciences. Recently, the nanomaterials are among the eminent tools for improving the low thermal conductivity of working fluids. Therefore, in view of the existing contributions, this article presents a two-dimensional numerical simulation for the transient flow of a non-Newtonian nanofluid generated by an expanding/contracting circular cylinder. This critical review further explores the impacts of variable magnetic field, thermal radiation, velocity slip and convective boundary conditions. The basic governing equations for Williamson fluid flow are formulated with the assistance of boundary layer approximations. The non-dimensional form of partially coupled ordinary differential equations has been tackled numerically by utilizing versatile Runge–Kutta integration scheme. The momentum, thermal and concentration characteristics are investigated with respect to several critical parameters, like, Weissenberg number, unsteadiness parameter, viscosity ratio parameter, slip parameter, suction parameter, magnetic parameter, thermophoresis parameter, Brownian motion parameter, Prandtl number, Lewis number and Biot number. The outcomes of the systematic reviews of these parameters and forest plots are illustrated. The study reveals that multiple solutions for the considered problem occurs for diverse values of involved physical parameters. The computed results indicate that the friction and heat transfer coefficients are significantly raised by the magnetic parameter for upper branch solutions.  相似文献   

12.
A.M.Salem  Rania Fathy 《中国物理 B》2012,21(5):54701-054701
The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic(MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented,taking into account thermal radiation and internal heat genberation/absorbtion.The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point.The Rosseland approximation is used to describe the radiative heat flux in the energy equation.The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung-Kutta method with the shooting technique.A comparison with previously published work has been carried out and the results are found to be in good agreement.The results are analyzed for the effect of different physical parameters,such as the variable viscosity and thermal conductivity,the ratio of free stream velocity to stretching velocity,the magnetic field,the porosity,the radiation and suction/injection on the flow,and the heat and mass transfer characteristics.The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1.In addition,the imposition of fluid suction increases both the rate of heat and mass transfer,whereas fluid injection shows the opposite effect.  相似文献   

13.
The present paper addresses the megnetohydrodynamic Jeffrey fluid flow with heat and mass transfer on an infinitely rotating upright cone. Inquiry is carried out with heat source/sink and chemical reaction effects. Further, constant thermal and concentration flux situations are imposed. Optimal homotopy analysis method (OHAM) is employed to achieve series solutions of the concerned differential equations. Important results of the flow phenomena are explored and deliberated by means of graphs and numerical tables. It is perceived that thermal boundary layer thickness possess contrast variations for the heat source and heat sink, respectively. The chemical reaction enhances the heat transfer rate but decline the mass transfer rate. Moreover, the precision of the existing findings is verified by associating them with the previously available work.  相似文献   

14.
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc.  相似文献   

15.
The aim of this paper is the investigation of heat transfer regarding the cases of both stretching and shrinking sheets with a sponge-like horizontal wall that allows for mass transpiration. The effects of Prandtl number, radiation and external magnetic field are extensively examined. The Navier-Stokes equations are reduced to partial differential equations, which are eventually become ordinary differential equations and solved analytically. Furthermore, the power-law wall temperature and heat flux boundary conditions are imposed on the boundary layer energy equation for obtaining exact analytical solutions. The results revealed that in both the stretching and shrinking sheet scenarios the thickness of the thermal boundary layer decreases with either increasing of transpiration as well as the Chandrasekhar and Prandtl number numbers or decreasing radiation number. Additionally, the characteristics of the heat transfer regarding a shrinking sheet and those of a stretching sheet are found not to be similar. In fact, a new solution branch appeared which indicates that multiple solutions may emerge under certain circumstances. Finally, by using the present analytical relationships, theoretical guidelines can be given for regulating the procedure.  相似文献   

16.
The current mathematical model explains the influence of non-linear thermal radiation on the Casson liquid flow over a moving thin needle by considering Buongiorno's nanofluid model.The influences of Stefan blowing, Dufour and Soret effects are also considered in the model. The equations which represent the described flow pattern are reduced to ordinary differential equations(ODEs) by using apt similarity transformations and then they are numerically solved with Runge–Kutta-Fehlberg's fourth fifth-order method(RKF-45) with shooting process. The impacts of pertinent parameters on thermal, mass and velocity curves are deliberated graphically.Skin friction, rate of heat and mass transfer are also discussed graphically. Results reveal that, the increase in values of Brownian motion, thermophoresis, Dufour number, heating and radiative parameters improves the heat transfer. The increasing values of the Schmidt number deteriorates the mass transfer but a converse trend is seen for increasing values of the Soret number. Finally,the escalating values of the radiative parameter decays the rate of heat transfer.  相似文献   

17.
An investigation is carried out on mixed convection boundary layer flow of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface in which the heat transfer includes the effects of viscous dissipation, elastic deformation, thermal radiation, and non-uniform heat source/sink for two general types of non-isothermal boundary conditions. The governing partial differential equations for the fluid flow and temperature are reduced to a nonlinear system of ordinary differential equations which are solved analytically using the homotopy analysis method (HAM). Graphical and numerical demonstrations of the convergence of the HAM solutions are provided, and the effects of various parameters on the skin friction coefficient and wall heat transfer are tabulated. In addition, it is demonstrated that previously reported solutions of the thermal energy equation given in [1] do not converge at the boundary, and therefore, the boundary derivatives reported are not correct.  相似文献   

18.
19.
The current investigation highlights the mixed convection slip flow and radiative heat transport of uniformly electrically conducting Williamson nanofluid yield by an inclined circular cylinder in the presence of Brownian motion and thermophoresis parameter.A Lorentzian magnetic body force model is employed and magnetic induction effects are neglected.The governing equations are reduced to a system of nonlinear ordinary differential equations with associated boundary conditions by applying scaling group transformations.The reduced nonlinear ordinary differential equations are then solved numerically by Runge-Kutta-Fehlberg fifth-order method with shooting technique.The effects of magnetic field,Prandtl number,mixed convection parameter,buoyancy ratio parameter,Brownian motion parameter,thermophoresis parameter,heat generation/absorption parameter,mass transfer parameter,radiation parameter and Schmidt number on the skin friction coefficient and local Nusselt are analyzed and discussed.It is found that the velocity of the fluid decreases with decrease in curvature parameter,whereas it increases with mixed convection parameter.Further,the local Nusselt number decreases with an increase in the radiation parameter.The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.  相似文献   

20.
The aim of the current study is to find out the dual solutions of the two-dimensional magnetohydrodynamic (MHD) flow of Casson fluid and heat transfer over the stretching sheet. The focus of the study is to examine the linear thermal radiation effects on dual solutions for both the steady and unsteady flow of Casson fluid over the stretching sheet under the influence of uniform magnetic field. The governing equations are formed as system of partial differential equations (PDEs). Using suitable transformations, the system of PDEs are converted into favorable nonlinear system of ordinary differential equations (ODEs). Simulations are performed in Maple 2015 to form the dual solutions in order to achieve the velocity, temperature, skin friction and heat transfer profiles of the Casson fluid over the stretching sheet. It is concluded that the dual solutions for the corresponding model are numerically stable. Furthermore, the upper branch solutions of the Casson fluid profiles are numerically stable as compared to the lower branch solutions. Results indicate that positive Eigen values of the MHD flow of Casson fluid provide stable profiles as compared to the negative Eigen values. It is believed that the current study would provide a base for the dual solution of the other types of the non-Newtonian fluid flows over various categories of surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号