首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider the random entire function
$f(z) = \sum\limits_{n = 0}^\infty {{\phi _n}{a_n}{z^n}} $
, where the ? n are independent standard complex Gaussian coefficients, and the a n are positive constants, which satisfy
$\mathop {\lim }\limits_{x \to \infty } {{\log {a_n}} \over n} = - \infty $
.
We study the probability P H (r) that f has no zeroes in the disk{|z| < r} (hole probability). Assuming that the sequence a n is logarithmically concave, we prove that
$\log {P_H}(r) = - S(r) + o(S(r))$
, where
$S(r) = 2 \cdot \sum\limits_{n:{a_n}{r^n} \ge 1} {\log ({a_n}{r^n})} $
, and r tends to ∞ outside a (deterministic) exceptional set of finite logarithmic measure.
  相似文献   

2.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

3.
Let M Ω be the maximal operator with homogeneous kernel Ω. In the present paper, we show that if Ω satisfies the L 1-Dini condition on ?? n?1, then the following weak type (1,1) behaviors
$$\lim\limits _{\lambda \rightarrow 0_{+}}\lambda m(\{x\in \mathbb {R}^{n}:M_{\Omega } f(x)>\lambda \})=\frac {1}{n} \|\Omega \|_{1} \|f\|_{1},$$
$$\sup\limits_{\lambda >0}\lambda m(\{x\in \mathbb {R}^{n}:M_{\Omega } f(x)>\lambda \})\lesssim {\bigg ((\log n)\|\Omega \|_{1}+{\int }_{0}^{1/n}\frac {\tilde {\omega }_{1}(\delta )}{\delta }d\delta \bigg )}\|f\|_{1}$$
hold for the maximal operator M Ω and \(f\in L^{1}(\mathbb {R}^{n})\), here \(\tilde {\omega }_{1}\) denotes the L 1 integral modulus of continuity of Ω defined by translation in \(\mathbb {R}^{n}\).  相似文献   

4.
Let G be the group of the fractional linear transformations generated by
$$T(\tau ) = \tau + \lambda ,S(\tau ) = \frac{{\tau \cos \frac{\pi }{n} + \sin \frac{\pi }{n}}}{{ - \tau \sin \frac{\pi }{n} + \cos \frac{\pi }{n}}};$$
where
$$\lambda = 2\frac{{\cos \frac{\pi }{m} + \cos \frac{\pi }{n}}}{{\sin \frac{\pi }{n}}};$$
m, n is a pair of integers with either n ≥ 2,m ≥ 3 or n ≥ 3,m ≥ 2; τ lies in the upper half plane H.
A fundamental set of functions f0, fi and f automorphic with respect to G will be constructed from the conformal mapping of the fundamental domain of G. We derive an analogue of Ramanujan’s triple differential equations associated with the group G and establish the connection of f0, fi and f with a family of hypergeometric functions.  相似文献   

5.
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:?????(-?)~mu(x)=u~p(x)/|x|~s,in R_+~n,u(x)=-?u(x)=…=(-?)~(m-1)u(x)=0,on ?R_+~n,(0.1)where m is any positive integer satisfying 02mn.We first prove that the positive solutions of(0.1)are super polyharmonic,i.e.,(-?)~iu0,i=0,1,...,m-1.(0.2) For α=2m,applying this important property,we establish the equivalence between (0.1) and the integral equation u(x)=c_n∫R_+~n(1/|x-y|~(n-α)-1/|x~*-y|~(n-α))u~p(y)/|y|~sdy,(0.3) where x~*=(x1,...,x_(n-1),-x_n) is the reflection of the point x about the plane R~(n-1).Then,we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of(0.3),in whichαcan be any real number between 0 and n.By some Pohozaev type identities in integral forms,we prove a Liouville type theorem—the non-existence of positive solutions for(0.1).  相似文献   

6.
We consider the Schrödinger operator
$$ \text{-} \frac{d^{2}}{d x^{2}} + V {\text{on an interval}}~~[a,b]~{\text{with Dirichlet boundary conditions}},$$
where V is bounded from below and prove a lower bound on the first eigenvalue λ 1 in terms of sublevel estimates: if w V (y) = |{x ∈ [a, b] : V (x) ≤ y}|, then
$$\lambda_{1} \geq \frac{1}{250} \min\limits_{y > \min V}{\left( \frac{1}{w_{V}(y)^{2}} + y\right)}.$$
The result is sharp up to a universal constant if {x ∈ [a, b] : V(x) ≤ y} is an interval for the value of y solving the minimization problem. An immediate application is as follows: let \({\Omega } \subset \mathbb {R}^{2}\) be a convex domain and let \(u:{\Omega } \rightarrow \mathbb {R}\) be the first eigenfunction of the Laplacian ? Δ on Ω with Dirichlet boundary conditions on ?Ω. We prove
$$\| u \|_{L^{\infty}({\Omega})} \lesssim \frac{1}{\text{inrad}({\Omega})} \left( \frac{\text{inrad}({\Omega})}{\text{diam}({\Omega})} \right)^{1/6} \|u\|_{L^{2}({\Omega})},$$
which answers a question of van den Berg in the special case of two dimensions.
  相似文献   

7.
We study the operator-valued positive dyadic operator
$${T_\lambda }\left( {f\sigma } \right): = \sum\limits_{Q \in D} {{\lambda _Q}} \int_Q {fd\sigma 1Q}, $$
where the coefficients {λ Q : CD} QD are positive operators from a Banach lattice C to a Banach lattice D. We assume that the Banach lattices C and D* each have the Hardy–Littlewood property. An example of a Banach lattice with the Hardy–Littlewood property is a Lebesgue space.
In the two-weight case, we prove that the L C p (σ) → L D q (ω) boundedness of the operator T λ( · σ) is characterized by the direct and the dual L testing conditions:
$$\left\| {{1_Q}{T_\lambda }} \right\|{\left( {{1_Q}f\sigma } \right)||_{L_D^q\left( \omega \right)}} \lesssim {\left\| f \right\|_{L_C^\infty \left( {Q,\sigma } \right)}}\sigma {\left( Q \right)^{1/p}}$$
,
$${\left\| {{1_Q}{T_\lambda }*\left( {{1_{Qg\omega }}} \right)} \right\|_{L_{C*}^{p'}\left( \sigma \right)}} \lesssim {\left\| g \right\|_{L_{D*}^\infty \left( {Q,\omega } \right)}}\omega {\left( Q \right)^{1/q'}}$$
.
Here L C p (σ) and L D q (ω) denote the Lebesgue–Bochner spaces associated with exponents 1 < pq < ∞, and locally finite Borel measures σ and ω.
In the unweighted case, we show that the L C p (μ) → L D p (μ) boundedness of the operator T λ( · μ) is equivalent to the end-point direct L testing condition:
$${\left\| {{1_Q}{T_\lambda }\left( {{1_Q}f\mu } \right)} \right\|_{L_D^1\left( \mu \right)}} \lesssim {\left\| f \right\|_{L_C^\infty \left( {Q,\mu } \right)}}\left( {Q,\mu } \right)\mu \left( Q \right)$$
.
This condition is manifestly independent of the exponent p. By specializing this to particular cases, we recover some earlier results in a unified way.  相似文献   

8.
For any real number β > 1, let S n (β) be the partial sum of the first n items of the β-expansion of 1. It was known that the approximation order of 1 by S n (β) is β ?n for Lebesgue almost all β > 1. We consider the size of the set of β > 1 for which 1 can be approximated with the other orders \({\beta^{-\varphi(n)}}\) , where \({\varphi}\) is a positive function defined on \({\mathbb N}\) . More precisely, the size of the sets
$$\left\{\beta\in \mathfrak{B}:\limsup_{n\rightarrow\infty}\frac{\log_{\beta}(1-S_n(\beta))}{\varphi(n)}=-1\right\}$$
and
$$\left\{\beta\in \mathfrak{B}:\liminf_{n\rightarrow\infty}\frac{\log_{\beta}(1-S_n(\beta))}{\varphi(n)}=-1\right\}$$
are determined, where \({\mathfrak{B}=\{ \beta>1:\beta \text{ is not a simple Parry number}\}}\) .
  相似文献   

9.
In the space L 2 of real-valued measurable 2π-periodic functions that are square summable on the period [0, 2π], the Jackson-Stechkin inequality
$$E_n (f) \leqslant \mathcal{K}_n (\delta ,\omega )\omega (\delta ,f), f \in L^2 $$
, is considered, where E n (f) is the value of the best approximation of the function f by trigonometric polynomials of order at most n and ω(δ, f) is the modulus of continuity of the function f in L 2 of order 1 or 2. The value
$$\mathcal{K}_n (\delta ,\omega ) = \sup \left\{ {\frac{{E_n (f)}}{{\omega (\delta ,f)}}:f \in L^2 } \right\}$$
is found at the points δ = 2π/m (where m ∈ ?) for m ≥ 3n 2 + 2 and ω = ω 1 as well as for m ≥ 11n 4/3 ? 1 and ω = ω 2.
  相似文献   

10.
In this paper, we study the existence of multiple solutions for the boundary-value problem
$${\Delta _\gamma }u + f\left( {x,u} \right) = 0in\Omega ,u = 0on\partial \Omega ,$$
where Ω is a bounded domain with smooth boundary in R N (N ≥ 2) and Δ γ is the subelliptic operator of the type
$${\Delta _\gamma }u = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}u} \right)} ,{\partial _{{x_j}}}u = \frac{{\partial u}}{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \ldots ,{\gamma _N}} \right).$$
We use the three critical point theorem.
  相似文献   

11.
The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps \({f_{1}, \ldots , f_{k} : X \rightarrow N}\) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class
$$L(f_{1}, \ldots , f_{k}) \in H^{n(k-1)}(X; (f_{1}, \ldots , f_{k}) ^{\ast} (R \times \Gamma^{\ast}_{N} \times \ldots \times \Gamma^{\ast} _{N}))$$
is defined in such a way that \({L(f_{1}, \ldots , f_{k}) \neq 0}\) implies that the set of coincidences
$${\rm Coin}(f_{1}, \ldots , f_{k}) = \{x \in X\,|\,f_{1}(x) = \ldots = f_{k}(x)\}$$
is nonempty.
  相似文献   

12.
We suggest a new approach to studying the isochronism of the system
${{dx} \mathord{\left/ {\vphantom {{dx} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - y + p_n (x,y),{{dy} \mathord{\left/ {\vphantom {{dy} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = x + q_n (x,y),$
where p n and q n are homogeneous polynomials of degree n. This approach is based on the normal form
${{dX} \mathord{\left/ {\vphantom {{dX} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - Y + XS(X,Y),{{dY} \mathord{\left/ {\vphantom {{dY} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = X + YS(X,Y)$
and its analog in polar coordinates. We prove a theorem on sufficient conditions for the strong isochronism of a center and a focus for the reduced system and obtain examples of centers with strong isochronism of degrees n = 4, 5. The present paper is the first to give examples of foci with strong isochronism for the system in question.
  相似文献   

13.
Mohsen Kian 《Positivity》2018,22(3):773-781
The famous Hardy inequality asserts that if f is a non-negative p-integrable \((p>1)\) function on \((0,\infty )\), then
$$\begin{aligned} \int _{0}^{\infty }\left( \frac{1}{x}\int _{0}^{x}f(t)dt\right) ^pdx\le \left( \frac{p}{p-1}\right) ^p\int _{0}^{\infty }f(x)^pdx. \end{aligned}$$
We present an external form of the Hardy inequality for Hilbert space operators. Moreover, utilizing the operator log-convex functions, a refinement of the operator Hardy inequality is also given.
  相似文献   

14.
Suppose that an even integrable function Ω on the unit sphere S 1 in R 2 with mean value zero satisfies
$\mathop{\mathrm{essup}}\limits_{\xi\in \mathbf{S}^{1}}\biggl|\int_{\mathbf{S}^{1}}\Omega(\theta)\log\frac{1}{|\theta\cdot\xi|}\,d\theta\biggr|<+\infty,$
then the singular integral operator T Ω given by convolution with the distribution p.v.?Ω(x/|x|)|x|?2, initially defined on Schwartz functions, extends to an L 2-bounded operator. We construct examples of a function Ω satisfying the above conditions and of a continuous bounded integrable function f such that
$\limsup_{\epsilon\to 0^+}\biggl|\int_{\epsilon<|y|}\Omega(y/|y|)|y|^{-2}f(x-y)dy\biggr|=\infty\quad \hbox{a. e.}$
  相似文献   

15.
In this paper, we consider the non-autonomous modified Korteweg-de Vries (mKdV) equation
$${u_t} = {u_{xxx}} - 6f\left( {\omega t} \right){u^2}{u_x},x \in \mathbb{R}/2\pi \mathbb{Z}$$
, where f(ωt) is real analytic and quasi-periodic in t with frequency vector ω = (ω1,ω2, · · ·; ω m ). Basing on an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, we obtain the existence of Cantor families of smooth quasi-periodic solutions.
  相似文献   

16.
We prove the local boundedness of variational solutions and parabolic minimizers to evolutionary problems, where the integrand f is convex and satisfies a non-standard p, q-growth condition with
$$1 < p \leq q \leq p \tfrac{n+2}{n}.$$
A function \({u\colon \Omega_T := \Omega \times (0,T) \to \mathbb{R}}\) is called parabolic minimizer if it satisfies the minimality condition
$$\int_{\Omega_T} u \cdot \partial_t \varphi +f(x, Du) {\rm d} z \leq \int_{\Omega_T} f(x, Du + D \varphi) {\rm d}z$$
for every \({\varphi \in C^\infty_0(\Omega_T)}\). Moreover, we will show local boundedness for parabolic minimizers, if f satisfies an anisotropic growth condition.
  相似文献   

17.
We investigate generalised Piterbarg constants
$$\mathcal{P}_{\alpha, \delta}^{h}=\lim\limits_{T \rightarrow \infty} \mathbb{E}\left\{ \sup\limits_{t\in \delta \mathbb{Z} \cap [0,T]} e^{\sqrt{2}B_{\alpha}(t)-|t|^{\alpha}- h(t)}\right\} $$
determined in terms of a fractional Brownian motion B α with Hurst index α/2∈(0,1], the non-negative constant δ and a continuous function h. We show that these constants, similarly to generalised Pickands constants, appear naturally in the tail asymptotic behaviour of supremum of Gaussian processes. Further, we derive several bounds for \(\mathcal {P}_{\alpha , \delta }^{h}\) and in special cases explicit formulas are obtained.
  相似文献   

18.
In this article, we study the existence of infinitelymany solutions for the boundary–value problem
$$ - {\Delta _\gamma }u + a\left( x \right)u = f\left( {x,u} \right)in\Omega ,u = 0on\partial \Omega $$
, where Ω is a bounded domain with smooth boundary in ? N (N ≥ 2) and Δγ is a subelliptic operator of the form
$${\Delta _\gamma }: = \sum\limits_{j = 1}^N {{\partial _{{x_j}}}\left( {\gamma _j^2{\partial _{{x_j}}}} \right)} ,{\partial _{{x_j}}}: = \frac{\partial }{{\partial {x_j}}},\gamma = \left( {{\gamma _1},{\gamma _2}, \cdots ,\gamma N} \right)$$
. Our main tools are the local linking and the symmetric mountain pass theorem in critical point theory.
  相似文献   

19.
In this paper, we consider a method for inverting the Laplace transform F(s) = \(\int\limits_0^\infty {e^{ - st} f(t)dt} \), which consists in representing the original function by the Laguerre series
$f(t) = \sum\limits_{k = 0}^\infty {a_k L_k (bt).} $
(1)
First, we perform a conformal mapping of the plane (s), which depends on parameter ξ. The value of the parameter is determined by the location of the singular points of the given representation. Under this mapping, series (1) takes the form
$f(t) = \frac{{b - \xi }}{b}\exp (\xi t)\sum\limits_{k = 0}^\infty {c_k L_k ((b - \xi )t).} $
It is demonstrated that such inverting scheme is equivalent to applying the Picone-Tricomi method with further acceleration of the rate of convergence of series (1) using the Euler-Knopp nonlinear procedure
$\sum\limits_{k = 0}^\infty {a_k z^k } = \sum\limits_{k = 0}^\infty {A_k (p)\frac{{z^k }}{{(1 - pz)^{k + 1} }},} A_k (p) = \sum\limits_{j = 0}^k {\left( \begin{gathered} k \hfill \\ j \hfill \\ \end{gathered} \right)( - p)^{k - j} a_j } .$
Under this approach, the original function is represented by the series
$f(t) = \exp \left( {\frac{{bpt}}{{p - 1}}} \right)\sum\limits_{k = 0}^\infty {\frac{{A_k (p)}}{{(1 - p)^{k + 1} }}L_k } \left( {\frac{{bpt}}{{1 - p}}} \right),$
where parameters ξ and p are related by the formula p = x/(ξ ? b). Unlike many other methods for summation of series, in the scheme suggested, there is no need to investigate the regularity conditions.
  相似文献   

20.
In this paper we consider the random r-uniform r-partite hypergraph model H(n 1, n 2, ···, n r; n, p) which consists of all the r-uniform r-partite hypergraphs with vertex partition {V 1, V 2, ···, V r} where |V i| = n i = n i(n) (1 ≤ i ≤ r) are positive integer-valued functions on n with n 1 +n 2 +···+n r = n, and each r-subset containing exactly one element in V i (1 ≤ ir) is chosen to be a hyperedge of H pH (n 1, n 2, ···, n r; n, p) with probability p = p(n), all choices being independent. Let
$${\Delta _{{V_1}}} = {\Delta _{{V_1}}}\left( H \right)$$
and
$${\delta _{{V_1}}} = {\delta _{{V_1}}}\left( H \right)$$
be the maximum and minimum degree of vertices in V 1 of H, respectively;
$${X_{d,{V_1}}} = {X_{d,{V_1}}}\left( H \right),{Y_{d,{V_1}}} = {Y_{d,{V_1}}}\left( H \right)$$
,
$${Z_{d,{V_1}}} = {Z_{d,{V_1}}}\left( H \right)and{Z_{c,d,{V_1}}} = {Z_{c,d,{V_1}}}\left( H \right)$$
be the number of vertices in V 1 of H with degree d, at least d, at most d, and between c and d, respectively. In this paper we obtain that in the space H(n 1, n 2, ···, n r; n, p),
$${X_{d,{V_1}}},{Y_{d,{V_1}}},{Z_{d,{V_1}}}and{Z_{c,d,{V_1}}}$$
all have asymptotically Poisson distributions. We also answer the following two questions. What is the range of p that there exists a function D(n) such that in the space H(n 1, n 2, ···, n r; n, p),
$$\mathop {\lim }\limits_{n \to \infty } P\left( {{\Delta _{{V_1}}} = D\left( n \right)} \right) = 1$$
? What is the range of p such that a.e., H pH (n 1, n 2, ···, n r; n, p) has a unique vertex in V 1 with degree
$${\Delta _{{V_1}}}\left( {{H_p}} \right)$$
? Both answers are p = o (log n 1/N), where
$$N = \mathop \prod \limits_{i = 2}^r {n_i}$$
. The corresponding problems on
$${\delta _{{V_i}}}\left( {{H_p}} \right)$$
also are considered, and we obtained the answers are p ≤ (1 + o(1))(log n 1/N) and p = o (log n 1/N), respectively.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号