首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The linear linker 1,3-bis(2-methylimidazolyl)propane (Bmip) has been used to construct two new coordination polymers with Zn2+ and Co2+ ions and carboxylate donor ligand viz., 4,4’-oxydibenzoic acid (H2Oba). Compounds formed hydrothermally are [Zn(Bmip)(Oba)] n (Ι), [Co(Bmip)(Oba)] n (II). Complexes Ι and II have been characterized by single crystal X-ray diffraction (CIF files CCDC nos. 1033354 (I), 1001813 (II)), IR spectroscopy, thermogravimetry, elemental analysis and powder X-ray diffraction. Single crystal X-ray analysis revealed that complexes Ι and II are isostructural, which exhibit 2D 44-sql net. And the adjacent 44-sql net are further inforced through weak noncovalent C–H···π and H-bonding to form a 3D supramolecular framework. Furthermore, the photoluminescence property of complexes Ι and II in the solid state at room temperature was also investigated.  相似文献   

2.
Macrocyclic and supermolecular complexes [Cu2(NiL)2Cl4] (I) and [Cd2(CuL)2Cl4] (II) (H2L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-diene) have been synthesized and structurally determined by X-ray diffraction and IR spectrum. Complex I crystallizes in the monoclinic system with P21/n group, a = 10.9019(15), b = 14.3589(19), c = 12.4748(17) 0A, β = 108.645(2)°, Z = 4. Complex II crystallizes in the monoclinic system with P21/n group, a = 10.9784(16), b = 14.580(2), c = 12.8904(18) Å, β = 109.339(2)°, Z = 4.  相似文献   

3.
Two novel coordination polymers, namely {[Co(Ttac)0.5(1,4-Bib)(H2O)] · H2O}n (I) and {[La(HTtac)2(2H2O)] · H2O}n (II) (H4Ttac = 4,5-di(3'-carboxylphenyl)-phthalic acid, 1,4-Bib = 1,4-bis(1-imidazoly) benzene), have been designed and successfully prepared via hydrothermal process, and characterized by elemental analyses, IR spectroscopy, and single crystal X-ray diffraction (CIF files CCDC nos. 1039298 (I), 1039300 (II)). Structural analysis reveals that the H4Ttac ligands adopt different coordination modes in the as-synthesized I and II, and thus give rise to the targeted coordination polymers with different configurations. It is worth mentioning that, coordination polymer I is assembled from low-dimensional structures into three-dimensional (3D) via π···π stacking interactions, while three-dimensional coordination polymer II is formed by covalent bonds. Luminescent properties of coordination polymer II have been studied at ambient temperature. Significantly, luminescent measurement indicates that coordination polymer II may be acted as potential luminescent recognition sensors towards Cu2+ and Mn2+ ions.  相似文献   

4.
Three cobalt(II) coordination polymers {[Co(L1)(nda)(H2O)2]·2H2O} n (1), [Co(L2)(tbi)(H2O)] n (2) and [Co(L2)(bpdc)(H2O)] n (3) (L1 = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, L2 = 1,3-bis(benzimidazol-1-yl)-2-propanol, H2nda = 2,6-naphthalenedicarboxylic acid, H2tbi = 5-tert-butyl isophthalic acid and H2bpdc = 4,4′-biphenyldicarboxylic acid) were synthesized and characterized by physicochemical and spectroscopic methods. Complex 1 exhibits a 1D loop-like structure, which is further extended into a 3D 3,3,4T31 network through two O–H···O hydrogen bonding interactions. Complex 2 displays a 1D ladder-like chain, arranged into a 2D supramolecular network with 3,3,4L34 topology via classical O–H···O hydrogen bonding interactions, whereas complex 3 features a 2D 3,4L13 layer structure and further assembles into a 3D framework with a twofold interpenetrating sqc65 topology through O–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of these complexes for the degradation of Congo red in a Fenton-like process have been investigated.  相似文献   

5.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

6.
Crystals of double polyphosphates EuCs5(PO3)8 (I) and GdCs5(PO3)8 (II) have been studied by X-ray diffraction. The isostructural crystals of I and II are monoclinic, space group C2. Only unit cell parameters have been determined for the crystals of double Pr and Cs polyphosphate (III). This crystal is isostructural with earlier studied La3Cs15P24O72 · 6H2O (IV). The crystals of compounds III and IV are triclinic, space group P1, Z = 1; a = 11.987(2) and 12.178(5) Å, b = 14.754(8) and 14.740(8) Å, c = 14.692(8) and 14.847(9) Å, α = 60.15(4)° and 60.87(5)°, β = 67.04(4)° and 66.35(4)°, γ = 78.76(3)° and 77.54(4)°, respectively. In compounds I and II, the polyphosphate anions exist as infinite chains. The MIIIO8 polyhedra are isolated from each other but share edges and faces with the CsO n polyhedra.  相似文献   

7.
Two new complexes {[Zn(H2L)(Bpp)] · H2O} n (I) and {[Ag(H3L)(Bpp)] · 0.25H2O} n (II) (H4L = 5-(2,3-dicarboxy phenoxy) isophthalic acid, Bpp = 1,3-bis(4-pyridyl)propane) were prepared and characterized by single crystal X-ray diffraction (XRD) (CCDC nos. 1578523 (I), 1578529 (II)), element analysis and powder XRD. Compound I showed a one-dimensional chain structure, in which the zinc(II) ion is fourcoordinated with a tetrahedral geometry. Compound II is a 1D chain structure with the H3L– suspension arms. Complexes I and II are further extended into three-dimensional supramolecular framework via hydrogen bonds and π–π interactions. The solid state luminescent properties of compounds I and II have been investigated.  相似文献   

8.
A new triazole-substituted ligand H2L (H2Trza = 3-amino-1H-1,2,4-triazole-5-acetate) and its two new isomorphic compounds [M(HTrza)2(H2O)2] ? 2H2O (Co(I) and Mn(II)) have been synthesized and characterized structurally. Their X-ray crystal structures (CIF files CCDC nos. 906893 for I and 906892 for II) show that H2L belongs to a tetragonal system; space group P43 with a = b = 5.0445(13), c = 27.054(10) Å; Z = 4. Complex I belongs to a monoclinic system; space group P21/n with a = 7.6543(8), b = 7.3453(8), c = 13.6283(14) Å; β = 91.5990(10)°, Z = 2. Complex II belongs to a triclinic system; space group with a = 6.8550(15), b = 8.0630(18), c = 15.173(4) Å; α = 84.794(4)°, β = 79.005(3)°, γ = 73.779(4)°, Z = 2. X-ray analysis demonstrates that compound H2L is found to contain a H2Trza and a lattic water molecule; complexes I and II are discrete mononuclear species. The central Co(II) and Mn(II) atoms exhibit octahedral coordinations, type 4 + 2. In two compounds, the coordination entities are further organized via hydrogenbonding interactions to generate uniform supramolecular networks. Thermal stabilities of two compounds were examined by thermogravimetric analysis.  相似文献   

9.
The cadmium O,O′-dethyl (I) and O,O′-di-sec-butyl phosphorodithioate (II) complexes have been synthesized and characterized in detail by 13C, 31P, and 113Cd CP/MAS NMR. X-ray crystallography shows that complex II has a binuclear molecular structure [Cd2{S2P(O-s-C4H9)2}4]. For 31P and 113Cd NMR signals, the chemical shift anisotropy δaniso and the asymmetry parameter η have been calculated. The 31P NMR signals are assigned to the terminal and bridging ligands in the complexes.  相似文献   

10.
The mix-ligand system of 5-(4-carboxy-2-nitrophenoxy)isophthalic acid (HСn-H2Ipa) and dipyridyl-type molecule produces two M(II) porous coordination polymers, namely {[Zn(HCn-Ipa)(Dpe)(H2O)] · 2H2O} n (I) and {[Co(Cn-HIpa)(Dpe)(H2O)3] · 2.5H2O} n (II) (Dpe = 1,2-di(4-pyridyl) ethylene). Structure determinations reveal that two complexes feature different one-dimensional (1D) polymers assembling into supramolecular microporous frameworks with different thermal stabilities. The 3D supramolecular frameworks of complex I show relatively lower stability, which can be caused by relatively larger porous cavity absent of the strong hydrogen bonds interaction, whereas thick-layer blocks in complex II are cohered further together by H-bonding interactions to form its 3D supramolecular network with relatively higher stability, indicating extraordinarily stable H-bonding systems; CIF files CCDC nos. 966919 (I) and 966920 (II).  相似文献   

11.
The reactions of aromatic dicarboxylic acids and methyl-functionalized 4,4′-bipyridine ligands with metal salts under hydrothermal conditions generated four structurally diverse cobalt(II), zinc(II) and cadmium(II) coordination polymers, [Co(CH3-BDC)(dmbpy)0.5] n (1), [Cd(OH-HBDC)2(dmbpy)] n (2), [Zn(NDC)(dmbpy)] n , (3) and {[Cd(DBA)(dmbpy)0.5]·2H2O} n (4) (CH3–H2BDC = 5-methylisophthalic acid, OH–H2BDC = 5-hydroxyisophthalic acid, H2NDC = 1,4-naphthalenedicarboxylic acid, H2DBA = 4,4′-methylenedibenzoic acid, dmbpy = 2,2′-dimethyl-4,4′-bipyridine). All four complexes have been structurally characterized by X-ray crystallography. Complex 1 shows a 3D jsm topology structure with two 1D channels parallel to the a and b axes. Complex 2 has a zigzag chain in which the OH-HBDC ligands point alternately up and down. Complexes 3 and 4 show 2D (4,4) networks when the dinuclear metal centers and their ligands are regarded as nodes and linkers, respectively. Complex 3 also shows twofold interpenetration with 1D channels along the b axis. Two nets of complex 4 interlock in parallel, giving rise to a polycatenated layer (2D → 2D). Thermogravimetric and chemical stabilities, magnetic and luminescent properties of these complexes were investigated.  相似文献   

12.
Three two-dimensional coordination polymers [Cd(2,3-Pyma)Cl2] n (I), {[Cd(2,3-Pyma)(1,4-Chdc)] · 4H2O}n (II) and {[Zn2(2,3-Pyma)(1,2,4,5-Bttc)(H2O)4] · 6H2O} n (III) (2,3-Pyma = (2,3-pyridylmethyl) amine, H2-1,4-Chdc = 1,4-cyclohexanedicarboxylic acid, and H4-1,2,4,5-Bttc = 1,2,4,5-benzenetetracarboxylic acid) have been synthesized and structurally characterized by single crystal X-ray crystallography (CIF files CCDC nos. 989461 (I), 1055685 (II) and 1055686 (III)). Three complexes are all twodimensional layer networks bridged by the flexible 2,3-Pyma ligands or the carboxylate ligands. It is noted that the flexible 1,4-Chdc ligands bind the Cd2+ ions into a helical chain structure in complex II. The photoluminescence and thermal properties are investigated.  相似文献   

13.
A series of new two-dimensional (2D) lanthanide(III) coordination polymers, namely {[Ln2(μ 2-HTFMIDC)3(DMA)4] · 2H2O} n [Ln = Pr (1); Nd (2); Sm (3); Eu (4); H3TFMIDC = 2-(trifluoromethyl)-1H-imidazole-4,5-dicarboxylic acid, DMA = N,N′-dimethylacetamide] for type I and {[Ln2(μ 2-HTFMIDC)3(DMA)2(H2O)2] · DMA} n [Ln = Eu (5); Gd (6)] for type II, have been successfully prepared under solvothermal conditions and structurally characterized for the first time. Both two types of structures exhibit similar 2D honeycomb-like networks, which are constructed by the linkages of μ 2-HTFMIDC2? bis-(bidentate) bridging ligands and Ln(III) metal centers. However, slightly different ABAB stacking fashions of the 2D layers and distinctly different hydrogen bonding interactions between the neighboring 2D layers are observed in crystal structures of type I and type II, which may be attributed to the lanthanide contraction effect. Meanwhile, the solid-state luminescent properties of 4 and 5 have been also investigated.  相似文献   

14.
3,5-Dimethyl-1H-pyrazolide of 3-O-acetyl ursolic acid (II) is obtained in the course of the interaction of 3 O-acetyl ursolic acid acyl chloride (I) and 3,5-dimethyl-1H-pyrazole. The crystal structure of compound II is determined from the single crystal XRD data (150 K, Bruker X8 Apex CCD autodiffractometer, MoK α radiation). The crystals are rhombic, the unit cell parameters are as follows: a = 10.6034(2) Å, b = 12.4096(2)Å, c = 24.5972(5)Å, P212121 space group. The structure consists of discrete acentric molecules. When pyrazolide II is boiled in the alcohol alkali solution, secondary hydroxyl is deacetylated and 3,5-dimethyl-1H-pyrazolide of ursolic acid IV is formed. Compounds II and IV are studied by NMR spectroscopy.  相似文献   

15.
Two new dioxomolybdenum(VI) complexes, [MoO2L1(MeOH)] (I) and [MoO2L2] (II), where L1 and L2 are the anionic forms of N'-(2-hydroxy-3,5-di-tert-butylbenzylidene)-4-methoxybenzohydrazide and 2-amino-N'-(2-hydroxy-3,5-di-tert-butylbenzylidene)benzohydrazide, respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination (CF files CCDC nos. 1448089 (I), 1487063 (II)). The crystal of I is monoclinic: space group P21/n, a = 7.353(1), b = 24.758(3), c = 13.891(2) Å, β = 101.013(2)°, V = 2482.3(6) Å3, Z = 4, R 1 = 0.0848, wR 2 = 0.2050. The crystal of II is monoclinic: space group P21/c, a = 6.752(1), b = 16.947(1), c = 19.510(1) Å, β = 96.891(2)°, V = 2216.5(4) Å3, Z = 4, R 1 = 0.0670, wR 2 = 0.1638. The Mo atom in complex I is in octahedral coordination, with three donor atoms of the hydrazone ligand, two oxo groups, and one methanol O atom. The Mo atom in complex II is in square pyramidal coordination, with three donor atoms of the hydrazone ligand, and two oxo groups. The complexes have interesting catalytic properties for sulfoxidation reactions.  相似文献   

16.
Three Co(II) coordination polymers, namely, {Co(btbb)0.5(ndc)(H2O)}n (1), {[Co(btbb)(bpdc)]·1.5H2O}n (2), and {[Co(btbp)2(3-npa)]·2H2O}n (3) (btbb = 1,4-bis(thiabendazole)butane, btbp = 1,3-bis(thiabendazole)propane, H2ndc = 2,6-naphthalenedicarboxylic acid, H2bpdc = 4,4′-biphenyldicarboxylic acid and 3-H2npa = 3-nitro phthalic acid) were synthesized under hydrothermal conditions. Their X-ray crystal structures show that complexes 1 and 2 both have 2D uninodal 3-connected hcb (honeycomb) structures. Complex 1 is further extended into a threefold interpenetrating 3D 4,4-connected mog (moganite) supramolecular architecture with the point symbol of {4.64.8}2{42.62.82} by O–H···O hydrogen bonding interactions. Complex 2 shows a 3D supramolecular framework involving π···π stacking interactions. Complex 3 features a uninuclear structure, which is further assembled into an ordered 2D hydrogen-bonded-driven pattern with O–H···O and O–H···N hydrogen bonding interactions. The fluorescence spectra and photocatalytic properties of complexes 13 for degradation of methyl orange were investigated.  相似文献   

17.
Two ethylenediamine derivatives—N-(2-ammoniumethyl)carbamate HN(COO?)CH2CH2N+H3 (I) and tetraacetylethylenediamine (H3CC(O))2NCH2CH2N(C(O)CH3)2 (II) (synthesized for the first time)—have been synthesized and characterized by X-ray crystallography. Compounds I and II are isolated as minor admixtures upon an attempt to synthesize ethylenediamine complexes of lanthanum and neodymium nitrates, respectively. The crystals of I and II are monoclinic: a = 7.778 Å, b = 8.060 Å, c = 7.568 Å, β = 95.73°, Z = 4, space group P21/c (I); a = 5.946, b = 10.255, c = 9.343 Å, β = 95.72°, Z = 2, space group P21/c (II). The bond lengths and bond angles lie within the corresponding standard values. Compounds I and II have different conformations of the N-C-C-N ethylenediamine moiety: gauche in I and trans in II, and the corresponding torsion angles are equal to 66.6° and 180°, respectively.  相似文献   

18.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

19.
The molecular and crystal structures of 1-(4-fluorophenyl)-1,4-dihydro-1H-tetrazole-5-thione (I) and its complex with cadmium(II) (II) are studied by single crystal XRD. Free ligand I is thione; it has a nonplanar structure (the torsion angle between the tetrazole and benzene rings is 54.99(7)°) and forms H-bonded centrosymmetric dimers via two N–H…S hydrogen bonds in the crystal. The dimers contain a central planar eight-membered {S=C–N–H…S=C–N–H…} ring. Complex II has a chain structure with the composition [(C7H4N4FS)2Cd]n. The environment of the Cd(II) atom consists of two nitrogen atoms and two sulfur atoms from four ligands I and represents a distorted tetrahedron. When complex II forms, ligand I converts into the thiol form. Infinite 1D chains contain eight-membered {←S=C–N–Cd←S=C–N–Cd} rings in a chair conformation. The chains in the crystal are arranged in layers parallel to the (101) plane due to secondary intermolecular F…F and π–π-stacking interactions.  相似文献   

20.
React of cadmium salts with 4,4'-bis((2-(pyridin-2-yl)-1H-benzo[d]imidazol-1-yl)methyl)biphenyl (Bpbib) yields two one-dimensional (1D) coordination architectures of two new complexes—{[Cd2(Bpbib)2(NO3)4] ? CH3OH} n (I) and {[Cd(Bpbib)Cl2] ? 2CH3OH} n (II). Complexes I and II were characterized by the elemental analyses, photoluminescence and emission spectra and single-crystal X-ray diffraction (CIF files CCDC nos. 1046021 (I), 1046022 (II)). Complex I is a helical array, whereas II features a zigzag pattern, depending upon the type of their associated anions. In addition to the primary organic linker, the counter anions also have a dominant influence on the overall structures, and even arouse the luminescence performance diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号