首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We consider two‐variable, first‐order logic in which a single distinguished predicate is required to be interpreted as a transitive relation. We show that the finite satisfiability problem for this logic is decidable in triply exponential non‐deterministic time. Complexity falls to doubly exponential non‐deterministic time if the transitive relation is constrained to be a partial order.  相似文献   

2.
The fluted fragment is a fragment of first-order logic (without equality) in which, roughly speaking, the order of quantification of variables coincides with the order in which those variables appear as arguments of predicates. It is known that this fragment has the finite model property. We consider extensions of the fluted fragment with various numbers of transitive relations, as well as the equality predicate. In the presence of one transitive relation (together with equality), the finite model property is lost; nevertheless, we show that the satisfiability and finite satisfiability problems for this extension remain decidable. We also show that the corresponding problems in the presence of two transitive relations (with equality) or three transitive relations (without equality) are undecidable, even for the two-variable sub-fragment.  相似文献   

3.
It is a classical result of Mortimer that , first-order logic with two variables, is decidable for satisfiability. We show that going beyond by adding any one of the following leads to an undecidable logic:– very weak forms of recursion, viz.?(i) transitive closure operations?(ii) (restricted) monadic fixed-point operations?– weak access to cardinalities, through the H?rtig (or equicardinality) quantifier?– a choice construct known as Hilbert's -operator. In fact all these extensions of prove to be undecidable both for satisfiability, and for satisfiability in finite structures. Moreover most of them are hard for , the first level of the analytical hierachy, and thus have a much higher degree of undecidability than first-order logic. Received: 13 July 1996  相似文献   

4.
We study two natural models of randomly generated constraint satisfaction problems. We determine how quickly the domain size must grow with n to ensure that these models are robust in the sense that they exhibit a non‐trivial threshold of satisfiability, and we determine the asymptotic order of that threshold. We also provide resolution complexity lower bounds for these models. One of our results immediately yields a theorem regarding homomorphisms between two random graphs. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

5.
Recent improvements in satisfiability algorithms for propositional logic have made partial instantiation methods for first order predicate logic computationally more attractive. Two such methods have been proposed, one by Jeroslow and a hypergraph method for datalog formulas by Gallo and Rago. We show that they are instances of two general approaches to partial instantiation, and we develop these approaches for a large decidable fragment of first order logic (the fragment).Working Paper 1991-11. Supported in part by the Air Force Office of Scientific Research, Grant number AFOSR-87-0292.  相似文献   

6.
We show that the original classic randomized algorithms for approximate counting in NP-hard problems, like for counting the number of satisfiability assignments in a SAT problem, counting the number of feasible colorings in a graph and calculating the permanent, typically fail. They either do not converge at all or are heavily biased (converge to a local extremum). Exceptions are convex counting problems, like estimating the volume of a convex polytope. We also show how their performance could be dramatically improved by combining them with the classic splitting method, which is based on simulating simultaneously multiple Markov chains. We present several algorithms of the combined version, which we simple call the splitting algorithms. We show that the most advance splitting version coincides with the cloning algorithm suggested earlier by the author. As compared to the randomized algorithms, the proposed splitting algorithms require very little warm-up time while running the MCMC from iteration to iteration, since the underlying Markov chains are already in steady-state from the beginning. What required is only fine tuning, i.e. keeping the Markov chains in steady-state while moving from iteration to iteration. We present extensive simulation studies with both the splitting and randomized algorithms for different NP-hard counting problems.  相似文献   

7.
Tovey [A simplified satisfiability problem, Discrete Appl. Math. 8 (1984) 85-89] showed that it is NP-hard to decide the satisfiability of 3-SAT instances in which every variable occurs four times, while every instance of 3-SAT in which each variable occurs three times is satisfiable. We explore the border between these two problems. Answering a question of Iwama and Takaki, we show that, for every fixed k?0, there is a polynomial-time algorithm to determine the satisfiability of 3-SAT instances in which k variables occur four times and the remaining variables occur three times. On the other hand, it is NP-hard to decide the satisfiability of 3-SAT instances in which all but one variable occurs three times, and the remaining variable is allowed to occur an arbitrary number of times.  相似文献   

8.
In order to modelize the reasoning of intelligent agents represented by a poset T, H. Rasiowa introduced logic systems called “Approximation Logics”. In these systems the use of a set of constants constitutes a fundamental tool. We have introduced in [8] a logic system called without this kind of constants but limited to the case that T is a finite poset. We have proved a completeness result for this system w.r.t. an algebraic semantics. We introduce in this paper a Kripke‐style semantics for a subsystem of for which there existes a deduction theorem. The set of “possible worldsr is enriched by a family of functions indexed by the elements of T and satisfying some conditions. We prove a completeness result for system with respect to this Kripke semantics and define a finite Kripke structure that characterizes the propositional fragment of logic . We introduce a reational semantics (found by E. Orlowska) which has the advantage to allow an interpretation of the propositionnal logic using only binary relations. We treat also the computational complexity of the satisfiability problem of the propositional fragment of logic .  相似文献   

9.
We present two randomized entropy-based algorithms for approximating quite general #P-complete counting problems, like the number of Hamiltonian cycles in a graph, the permanent, the number of self-avoiding walks and the satisfiability problem. In our algorithms we first cast the underlying counting problem into an associate rare-event probability estimation, and then apply dynamic importance sampling (IS) to estimate efficiently the desired counting quantity. We construct the IS distribution by using two different approaches: one based on the cross-entropy (CE) method and the other one on the stochastic version of the well known minimum entropy (MinxEnt) method. We also establish convergence of our algorithms and confidence intervals for some special settings and present supportive numerical results, which strongly suggest that both ones (CE and MinxEnt) have polynomial running time in the size of the problem.  相似文献   

10.
We consider the random 2‐satisfiability (2‐SAT) problem, in which each instance is a formula that is the conjunction of m clauses of the form xy, chosen uniformly at random from among all 2‐clauses on n Boolean variables and their negations. As m and n tend to infinity in the ratio m/n→α, the problem is known to have a phase transition at αc=1, below which the probability that the formula is satisfiable tends to one and above which it tends to zero. We determine the finite‐size scaling about this transition, namely the scaling of the maximal window W(n, δ)=(α?(n,δ), α+(n,δ)) such that the probability of satisfiability is greater than 1?δ for α<α? and is less than δ for α>α+. We show that W(n,δ)=(1?Θ(n?1/3), 1+Θ(n?1/3)), where the constants implicit in Θ depend on δ. We also determine the rates at which the probability of satisfiability approaches one and zero at the boundaries of the window. Namely, for m=(1+ε)n, where ε may depend on n as long as |ε| is sufficiently small and |ε|n1/3 is sufficiently large, we show that the probability of satisfiability decays like exp(?Θ(nε3)) above the window, and goes to one like 1?Θ(n?1|ε|?3 below the window. We prove these results by defining an order parameter for the transition and establishing its scaling behavior in n both inside and outside the window. Using this order parameter, we prove that the 2‐SAT phase transition is continuous with an order parameter critical exponent of 1. We also determine the values of two other critical exponents, showing that the exponents of 2‐SAT are identical to those of the random graph. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 201–256 2001  相似文献   

11.
The satisfiability (SAT) problem is a central problem in mathematical logic, computing theory, and artificial intelligence. An instance of SAT is specified by a set of boolean variables and a propositional formula in conjunctive normal form. Given such an instance, the SAT problem asks whether there is a truth assignment to the variables such that the formula is satisfied. It is well known that SAT is in general NP-complete, although several important special cases can be solved in polynomial time. Semidefinite programming (SDP) refers to the class of optimization problems where a linear function of a matrix variable X is maximized (or minimized) subject to linear constraints on the elements of X and the additional constraint that X be positive semidefinite. We are interested in the application of SDP to satisfiability problems, and in particular in how SDP can be used to detect unsatisfiability. In this paper we introduce a new SDP relaxation for the satisfiability problem. This SDP relaxation arises from the recently introduced paradigm of higher liftings for constructing semidefinite programming relaxations of discrete optimization problems. To derive the SDP relaxation, we first formulate SAT as an optimization problem involving matrices. Relaxing this formulation yields an SDP which significantly improves on the previous relaxations in the literature. The important characteristics of the SDP relaxation are its ability to prove that a given SAT formula is unsatisfiable independently of the lengths of the clauses in the formula, its potential to yield truth assignments satisfying the SAT instance if a feasible matrix of sufficiently low rank is computed, and the fact that it is more amenable to practical computation than previous SDPs arising from higher liftings. We present theoretical and computational results that support these claims.Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

12.
We consider the complexity of satisfiability in ε‐logic, a probability logic. We show that for the relational fragment this problem is ‐complete for rational , answering a question by Terwijn. In contrast, we show that satisfiability in 0‐logic is decidable. The methods we employ to prove this fact also allow us to show that 0‐logic is compact, while it was previously shown that ε‐logic is not compact for .  相似文献   

13.
In this work we construct and analyze some finite difference schemes used to solve a class of time‐dependent one‐dimensional convection‐diffusion problems, which present only regular layers in their solution. We use the implicit Euler or the Crank‐Nicolson method to discretize the time variable and a HODIE finite difference scheme, defined on a piecewise uniform Shishkin mesh, to discretize the spatial variable. In both cases we prove that the numerical method is uniformly convergent with respect to the diffusion parameter, having order near two in space and order one or 3/2, depending on the method used, in time. We show some numerical examples which illustrate the theoretical results, in the case of using the Euler implicit method, and give better numerical behaviour than that predicted theoretically, showing order two in time and order N?2log2N in space, if the Crank‐Nicolson scheme is used to discretize the time variable. Finally, we construct a numerical algorithm by combining a third order A‐stable SDIRK with two stages and a third‐order HODIE difference scheme, showing its uniformly convergent behavior, reaching order three, up to a logarithmic factor. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

14.
In this article, we investigate local discontinuous Galerkin approximation of stationary convection‐dominated diffusion optimal control problems with distributed control constraints. The state variable and adjoint state variable are approximated by piecewise linear polynomials without continuity requirement, whereas the control variable is discretized by variational discretization concept. The discrete first‐order optimality condition is derived. We show that optimization and discretization are commutative for the local discontinuous Galerkin approximation. Because the solutions to convection‐dominated diffusion equations often admit interior or boundary layers, residual type a posteriori error estimate in L2 norm is proved, which can be used to guide mesh refinement. Finally, numerical examples are presented to illustrate the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 339–360, 2014  相似文献   

15.
We start the study of the enumeration complexity of different satisfiability problems in first-order team logics. Since many of our problems go beyond DelP, we use a framework for hard enumeration analogous to the polynomial hierarchy, which was recently introduced by Creignou et al. (Discret. Appl. Math. 2019). We show that the problem to enumerate all satisfying teams of a fixed formula in a given first-order structure is DelNP-complete for certain formulas of dependence logic and independence logic. For inclusion logic formulas, this problem is even in DelP. Furthermore, we study the variants of this problem where only maximal or minimal solutions, with respect to cardinality or inclusion, are considered. For the most part these share the same complexity as the original problem. One exception is the cardinality minimum-variant for inclusion logic, which is DelNP-complete, the other is the inclusion maximal-variant for dependence and independence logic, which is in Del+NP and DelNP-hard.  相似文献   

16.
Using the cavity equations of Mézard, Parisi, and Zecchina 23 ; Mézard and Zecchina, 24 we derive the various threshold values for the number of clauses per variable of the random K‐satisfiability problem, generalizing the previous results to K ≥ 4. We also give an analytic solution of the equations, and some closed expressions for these thresholds, in an expansion around large K. The stability of the solution is also computed. For any K, the satisfiability threshold is found to be in the stable region of the solution, which adds further credit to the conjecture that this computation gives the exact satisfiability threshold.© 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

17.
We analyse the mixing time of Markov chains using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Δ of a vertex and the minimum size m of an edge satisfy m ≥ 2Δ + 1. We also show that the Glauber dynamics for proper q‐colorings of a hypergraph mixes rapidly if m ≥ 4 and q > Δ, and if m = 3 and q ≥ 1.65Δ. We give related results on the hardness of exact and approximate counting for both problems. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

18.
Consider the bounded variable logics (with k variable symbols), and (with k variables in the presence of counting quantifiers ). These fragments of infinitary logic are well known to provide an adequate logical framework for some important issues in finite model theory. This paper deals with a translation that associates equivalence of structures in the k-variable fragments with bisimulation equivalence between derived structures. Apart from a uniform and intuitively appealing treatment of these equivalences, this approach relates some interesting issues for the case of an arbitrary number of variables to the case of just three variables. Invertibility of the invariants for , in particular, would imply a positive answer to the tempting conjecture that fixed-point logic with counting captures Ptime . Received July 13, 1996  相似文献   

19.
We present a comparison of different multigrid approaches for the solution of systems arising from high‐order continuous finite element discretizations of elliptic partial differential equations on complex geometries. We consider the pointwise Jacobi, the Chebyshev‐accelerated Jacobi, and the symmetric successive over‐relaxation smoothers, as well as elementwise block Jacobi smoothing. Three approaches for the multigrid hierarchy are compared: (1) high‐order h‐multigrid, which uses high‐order interpolation and restriction between geometrically coarsened meshes; (2) p‐multigrid, in which the polynomial order is reduced while the mesh remains unchanged, and the interpolation and restriction incorporate the different‐order basis functions; and (3) a first‐order approximation multigrid preconditioner constructed using the nodes of the high‐order discretization. This latter approach is often combined with algebraic multigrid for the low‐order operator and is attractive for high‐order discretizations on unstructured meshes, where geometric coarsening is difficult. Based on a simple performance model, we compare the computational cost of the different approaches. Using scalar test problems in two and three dimensions with constant and varying coefficients, we compare the performance of the different multigrid approaches for polynomial orders up to 16. Overall, both h‐multigrid and p‐multigrid work well; the first‐order approximation is less efficient. For constant coefficients, all smoothers work well. For variable coefficients, Chebyshev and symmetric successive over‐relaxation smoothing outperform Jacobi smoothing. While all of the tested methods converge in a mesh‐independent number of iterations, none of them behaves completely independent of the polynomial order. When multigrid is used as a preconditioner in a Krylov method, the iteration number decreases significantly compared with using multigrid as a solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We refine the constructions of Ferrante‐Rackoff and Solovay on iterated definitions in first‐order logic and their expressibility with polynomial size formulas. These constructions introduce additional quantifiers; however, we show that these extra quantifiers range over only finite sets and can be eliminated. We prove optimal upper and lower bounds on the quantifier complexity of polynomial size formulas obtained from the iterated definitions. In the quantifier‐free case and in the case of purely existential or universal quantifiers, we show that Ω(n /log n) quantifiers are necessary and sufficient. The last lower bounds are obtained with the aid of the Yao‐Håstad switching lemma (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号