首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulations of polyelectrolyte multilayering on a charged spherical particle revealed that the sequential adsorption of oppositely charged flexible polyelectrolytes proceeds with surface charge reversal and highlighted electrostatic interactions as the major driving force of layer deposition. Far from being completely immobilized, multilayers feature a constant surge of chain intermixing during the deposition process, consistent with experimental observations of extensive interlayer mixing in these films. The formation of multilayers as well as the extent of layer intermixing depends on the degree of polymerization of the polyelectrolyte chains and the fraction of charge on its backbone. The presence of ionic pairs between oppositely charged macromolecules forming layers seems to play an important role in stabilizing the multilayer film.  相似文献   

2.
Two combinations of sodium poly(4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) of different chain length and charge density are employed to construct multilayer films. The polyelectrolytes are assembled layer-by-layer on colloidal particles in the absence of salt. We have investigated the formation and electrical characteristics of the films by using electric light scattering technique. The results show that the film thickness is independent of the chain length when fully charged PAH (at pH 4.6) is combined with fully charged PSS. When the films are prepared with less charged PAH (at pH 6.7) and fully charged PSS, lower thickness is found for the film with shorter polymer chains. In all cases, the thickness increment realized on addition of the polymer with lower molar concentration is partially lost on exposure to the solution with higher concentration of the oppositely charged partner. When the film growth is regular (at equal molar concentrations of the fully charged polyelectrolytes), the ratio of PSS to PAH charge, estimated from the electro-optical effect values, exceeds 1. The electro-optical effect is also higher for the films ending with PSS when fully charged PSS is combined with less charged PAH (at pH 6.7). This reveals the key role of the charge in the last-adsorbed layer for the electro-optical behavior of the whole film.  相似文献   

3.
The growth behavior of all-silica nanoparticle multilayer thin films assembled via layer-by-layer deposition of oppositely charged SiO2 nanoparticles was studied as a function of assembly conditions. Amine-functionalized SiO2 nanoparticles were assembled into multilayers through the use of three different sizes of negatively charged SiO2 nanoparticles. The assembly pH of the nanoparticle suspensions needed to achieve maximum growth for each system was found to be different. However, the surface charge /z/ of the negatively charged silica nanoparticles at the optimal assembly pH was approximately the same, indicating the importance of this parameter in determining the growth behavior of all-nanoparticle multilayers. When /z/ of the negatively charged nanoparticles lies between 0.6z(0) and 1.2z(0) (where z(0) is the pH-independent value of the zeta-potential of the positively charged nanoparticles used in this study), the multilayers show maximum growth for each system. The effect of particle size on the film structure was also investigated. Although nanoparticle size significantly influenced the average bilayer thickness of the multilayers, the porosity and refractive index of multilayers made from nanoparticles of different sizes varied by a small amount. For example, the porosity of the different multilayer systems ranged from 42 to 49%. This study further demonstrates that one-component all-nanoparticle multilayers can be assembled successfully by depositing nanoparticles of the same material but with opposite surface charge.  相似文献   

4.
Polyelectrolyte multilayer films were successfully assembled from each of the three charged derivatives of chitosan; N-[(2-hydroxyl-3-trimethylammonium)propyl]chitosan chloride (HTACC), N-succinyl chitosan (SCC) and N-sulfofurfuryl chitosan (SFC), paired with one of the two oppositely charged polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on surface-treated poly(ethylene terephthalate) (treated PET) substrates by alternate layer-by-layer adsorption. Surface coverage and wettability of the multilayer films were determined by AFM and water contact angle measurements, respectively. Analysis by quartz crystal balance with dissipation (QCM-D) has suggested that all multilayer films are relatively rigid and have a high water content associated within their structures, accounting for up to 85-90% (w/w) for films having 7-10 layers. In vitro cytocompatibility tests for the fibroblast-like L929 cell line revealed a slight dependency for cell adhesion and proliferation on the outermost layer. The multilayer film containing HTACC exhibited moderate antibacterial activity against E. coli and S. aureus. Bearing negative charges, the multilayer films terminating with SFC and having at least 10 layers were capable of suppressing the adsorption of plasma proteins and platelet adhesion at a comparable level to the multilayer film assembled from heparin, a well-known antithrombogenic polymer.  相似文献   

5.
The effect of the strength of electrostatic and short-range interactions on the multilayer assembly of oppositely charged polyelectrolytes at a charged substrate was studied by molecular dynamics simulations. The multilayer buildup was achieved through sequential adsorption of charged polymers in a layer-by-layer fashion from dilute polyelectrolyte solutions. The strong electrostatic attraction between oppositely charged polyelectrolytes at each deposition step is a driving force behind the multilayer growth. Our simulations have shown that a charge reversal after each deposition step is critical for steady multilayer growth and that there is a linear increase in polymer surface coverage after the first few deposition steps. Furthermore, there is substantial intermixing between chains adsorbed during different deposition steps. We show that the polymer surface coverage and multilayer structure are each strongly influenced by the strength of electrostatic and short-range interactions.  相似文献   

6.
We performed molecular dynamics simulations of the electrostatic assembly of multilayers of flexible polyelectrolytes at a charged surface. The multilayer build-up was achieved through sequential adsorption of oppositely charged polymers in a layer-by-layer fashion from dilute polyelectrolyte solutions. The steady-state multilayer growth proceeds through a charge reversal of the adsorbed polymeric film which leads to a linear increase in the polymer surface coverage after completion of the first few deposition steps. Moreover, substantial intermixing between chains adsorbed during different deposition steps is observed. This intermixing is consistent with the observed requirement for several deposition steps to transpire for completion of a single layer. However, despite chain intermixing, there are almost perfect periodic oscillations of the density difference between monomers belonging to positively and negatively charged macromolecules in the adsorbed film. Weakly charged chains show higher polymer surface coverage than strongly charged ones.  相似文献   

7.
Charged derivatives of chitosan, N-sulfofurfuryl chitosan (SFC) and N-[(2-hydroxyl-3-trimethylammonium)propyl]chitosan chloride (HTACC) were prepared by reductive alkylation of amino groups of chitosan (CHI) using 5-formyl-2-furansulfonic acid, sodium salt (FFSA) as a reagent and ring opening of glycidyltrimethylammonium chloride (GTMAC) by amino groups of chitosan, respectively. The chemical structures of the charged derivatives were verified by (1)H NMR and FTIR analyses. Multilayer assembly of SFC, HTACC, CHI and the selected oppositely charged polyelectrolytes was monitored by a quartz crystal microbalance (QCM). Stratification of the multilayer film fabricated on plasma-treated poly(ethylene terephthalate) (treated PET) substrate was demonstrated by water contact angle data. The coverage of the assembled films was characterized by AFM and ATR-FTIR analyses. The bioactivity of the deposited multilayer film on the treated PET substrate was tested against selected proteins having a distinctive size and charge. This research strongly suggests that both SFC and HTACC are potential candidates for altering the surface bioactivity of materials.  相似文献   

8.
Thin polymeric films are assembled by the alternating adsorption of oppositely charged polyelectrolytes. The polyions are functionalized by azobenzenes, typically carrying donor-acceptor substituents. The azobenzene chromophores are exploited as versatile analytical tools, to study the assembling process, and to control the film quality. A high concentration of ionic groups does not seem to be advantageous per se for good film growth, but rather the matching of the charge densities of the polyelectrolyte pair used seems to be important. Also, the influence of the strongly interacting, form-anisotropic character of the azobenzenes on the internal film structure was investigated. Although even high concentrations of azobenzenes and of other mesogens do not induce particular ordering, a few polymer pairs allowed the construction of real multilayer films, exhibiting e.g. Bragg peaks.  相似文献   

9.
Here we report fabrication of artificial free-standing yeast biofilms built using sacrificial calcium carbonate-coated templates and layer-by-layer assembly of extracellular matrix-mimicking polyelectrolyte multilayers. The free-standing biofilms are freely floating multilayered films of oppositely charged polyelectrolytes and live cells incorporated in the polyelectrolyte layers. Such biofilms were initially formed on glass substrates of circular and ribbon-like shapes coated with thin layers of calcium carbonate microparticles. The templates were then coated with cationic and anionic polyelectrolytes to produce a supporting multilayered thin film. Then the yeast alone or mixed with various micro- and nanoparticle inclusions was deposited onto the multilayer composite films and further coated with outer polyelectrolyte multilayers. To detach the biofilms from the glass substrates the calcium carbonate layer was chemically dissolved yielding free-standing composite biofilms. These artificial biofilms to a certain degree mimic the primitive multicellular and colonial species. We have demonstrated the added functionality of the free-standing artificial biofilms containing magnetic, latex and silver micro- and nanoparticles. We have also developed "symbiotic" multicellular biofilms containing yeast and bacteria. This approach for fabrication of free-standing artificial biofilms can be potentially helpful in development of artificial colonial microorganisms composed of several different unicellular species and an important tool for growing cell cultures free of supporting substrates.  相似文献   

10.
Flexible and transparent gas-diffusion barriers have played an important role in recent years. The present study describes a flexible barrier film with a tailored architecture of cationic polyelectrolytes and clay/polymer nanoassemblies. Highly oriented and well-aligned barrier films were achieved by the consecutive absorption of flexible cationic polymer and anionic montmorillonite platelets. The experimental results showed that the layer-by-layer deposition of oppositely charged thin films containing self-assembled poly(vinyl alcohol) and montmorillonites improved their gas barrier characteristics based on the Ca degradation test, enhancing their optical transparency. This nanostructure, fabricated using a solution process, is useful in many applications, for example, flexible and moisture-free organic electronics. This simple and fast method is suitable for the mass coating of large surface areas, as required in industry.  相似文献   

11.
Electrostatic layer-by-layer assembly (LBL) is a versatile method of fabricating ultrathin multilayer films, coatings, and microcapsules from materials in solution, notably, oppositely charged polyelectrolytes in water. Polypeptides, a special type of polyelectrolyte, have recently shown promise for a range of applications in biotechnology and medicine, for example, artificial cells, drug delivery systems, cell/tissue scaffolds, artificial viruses, and implantable device coatings. Poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA) at neutral pH are model oppositely charged polypeptides. Experimental studies have shown that PLL/PLGA multilayer films contain a substantial amount of beta-sheets. Here, we present findings of a molecular dynamics (MD) study of the physical basis of interaction between PLL and PLGA in multilayer film models. Simulations have been carried out to study structural and dynamical properties of PLL/PLGA aggregates in beta-sheet conformation. The results suggest that hydrophobic interactions, in addition to electrostatics interactions, play a significant role in PLL/PLGA multilayers. The preferred orientation of peptides in the beta-sheet structures is antiparallel within sheets and parallel between sheets. Intersheet hydrogen-bond formation is more likely the result of peptide association than the cause. The approach provides a general means to understand better how various types of noncovalent interactions contribute to the structure and stability of polypeptide multilayer films.  相似文献   

12.
We have experimentally studied the adsorption of polyelectrolytes at oppositely charged surfaces. A weak flexible polyelectrolyte, poly(acrylic acid), was adsorbed from dilute solutions on a Langmuir film of a cationic amphiphile, dimethyldioctadecylammonium bromide. The polymer surface coverage, Gamma, at equilibrium was measured by two reflectivity techniques-ellipsometry and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS)-as a function of the surface charge density, sigma, and of the polymer ionization degree, alpha. Different adsorption regimes were evidenced. For weakly charged surfaces, sigma < sigma sat, Gamma increases with sigma and with 1/alpha, as expected for a neutralization of the surface by the adsorbed polymers. For highly charged surfaces, sigma > sigma sat, the adsorption of polyelectrolytes saturates. The mean orientation of the adsorbed chains also depends on the value of sigma: it is parallel to the surface for sigma < sigma (< sigma sat) and orthogonal to the surface for sigma > sigma. We have measured the values of sigma sat and sigma as a function of alpha and compared the results with existing theories.  相似文献   

13.
Multilayer films were assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA), deposited in alternation with poly(allylamine hydrochloride) (PAH). The strongly charged groups (styrene sulfonate, SS) are expected to form electrostatic linkages (to enhance film stability), while the weakly charged groups (maleic acid, MA) can alter multilayer film properties because they are responsive to external pH changes. In this study, we varied several assembly conditions such as pH, SS/MA ratio in PSSMA, and the ionic strength of the polyelectrolyte solutions. The multilayer films were also treated by immersion into pH 2 and 11 solutions after assembly. Quartz crystal microgravimetry and UV-visible spectrophotometry showed that the thickness of PSSMA/PAH multilayers decreases with increasing assembly pH regardless of whether salt was present in the polyelectrolyte solutions. When no salt was added, the multilayers are thinner, smoother, and grow less regularly. Atomic force microscopy images indicate that the presence of salt in polyelectrolyte solutions results in rougher surface morphologies, and this effect is especially significant in multilayers assembled at pH 2 and pH 11. When both polyelectrolytes are adsorbed at conditions where they are highly charged, salt was necessary to promote regular multilayer growth. Fourier transform infrared spectroscopy studies show that the carboxylic acids in the multilayers are essentially ionized when assembled from different pHs in 0.5 M sodium chloride solutions, whereas some carboxylic acids remain protonated in the multilayers assembled from solutions with no added salt. This resulted in different pH stability regimes when the multilayers were exposed to different pH solutions, post assembly.  相似文献   

14.
纳米自组装聚电解质超薄多层膜   总被引:5,自引:1,他引:4  
相反电荷的聚电解质在溶液中通过静电相互作用自组装形成超薄多层膜,这种膜的结构可实现分子水平上的控制。就其复合、结构及其影响因素、以及应用进行了概述。  相似文献   

15.
Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak "protein-like" polyelectrolytes (i.e., polypeptides), poly(L-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0-10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pKa values. The adsorption of HSA onto (PLL/PGA)n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the alpha-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.  相似文献   

16.
PS胶体粒子表面逐层自组装固定化SOD及其生物活性   总被引:3,自引:0,他引:3  
通过逐层自组装技术成功地把超氧化物歧化酶(SOD)吸附在聚苯乙烯(PS)胶体粒子表面.zeta电位和TEM证明了聚阳离子或聚阴离子型SOD与相反电荷的聚电解质在PS胶体粒子表面的交替吸附.通过测定SOD被胶体粒子吸附后上清液的生物活性,得到聚阴离子型SOD(pH=8.0)和聚阳离子型SOD(pH=4.3)在PS胶体粒子表面的吸附量分别为12和51IU,相对活性分别为23.4%和2.9%.聚阴离子型SOD在PS胶体粒子表面能形成平滑规整的膜,导致较高的相对活性.研究结果表明,通过调节pH值,可以优化自组装固定化酶的聚集状态和生物活性  相似文献   

17.
ZnSe;Cu纳米晶/聚电解质多层膜制备和结构研究   总被引:6,自引:0,他引:6  
采用分子沉积方法制备了ZnSe;Cu纳米晶/聚电解质多层膜,通过X射线光电子能谱(XPS)和透射电镜(TEM)等方法对薄膜的组成及结构进行了表征.XPS结果证实了回流处理对ZnSe;Cu微粒的表面结构以及铜离子价态的影响,从而很好地解释了经表面修饰后,微粒荧光增强的现象.TEM结果确定ZnSe;Cu的平均尺寸为3nm.X射线粉末衍射结果进一步确认ZnSe;Cu具有纤锌矿晶体结构.  相似文献   

18.
The electrochemical multilayer films of crown-shaped polyoxomolybdate Na21{[Na5(H2O)14] intersection[Mo(V)(20)Mo(VI)(26)O134(OH)10(mu-CH3COO)4]}.CH3COONa.90H2O (Mo46) and polyelectrolytes by layer-by-layer assembly were investigated. The stable multilayer films were assembled by alternate adsorption of negatively charged POM and positively charged polyelectrolytes is from their aqueous dispersions. UV-vis spectroscopy and cyclic voltammetry were used to monitor the regular growth of the multilayer films. The multilayer films-modified ITO electrode was used for the detection of electrocatalytic activity toward the reduction of nitrite, bromate, and hydrogen peroxide. The proposed novel immobilized method exhibited good stability, reproducibility and high sensitivity for the determination of electrocatalytic, which is important for practical application.  相似文献   

19.
Self-organized multilayer films were formed by sequential addition of oppositely charged cellulose I nanoparticles. The all-cellulosic multilayers were prepared via adsorption of cationicially modified cellulose nanofibrils (cat NFC) and anionic short crystalline cellulose (CNC) at pH 4.5 and pH 8.3. The properties and build-up behavior of layer-by-layer-constructed films were studied with microgravimetry (QCM-D) and the direct surface forces in these systems were explored with colloidal probe microscopy to gain information about the fundamental interplay between cat NFC and anionic CNC. The importance of the first layer on the adsorption of the consecutive layers was demonstrated by comparing pure in situ adsorption in the QCM-D with multilayer films made by spin coating the first cationic NFC layer and then subsequently adsorbing the following layers in situ in the QCM-D chamber. Differences in adsorbed amount and viscoelastic behavior were observed between those two systems. In addition, a significant pH dependence of cat NFC charge was found for both direct surface interactions and layer properties. Moreover the underlying cellulose layer in multilayer film was established to influence the surface forces especially at lower pH, where the cat NFC chains extensions were facilitated and overall charge was affected by the cationic counterpart within the layers. This enhanced understanding the effect of charge and structure on the interaction between these renewable nanoparticles is valuable when designing novel materials based on nanocellulose.  相似文献   

20.
We performed molecular dynamics simulations of a multilayered assembly of oppositely charged polyelectrolyte chains and nanoparticles on porous substrates with cylindrical pores. The film was constructed by the sequential adsorption of oppositely charged species in a layer-by-layer fashion from dilute solutions. The multilayer assembly proceeds through surface overcharging after the completion of each deposition step. The substrate overcharging fraction fluctuates around 0.5 for nanoparticle-polyelectrolyte systems and around 0.4 for polyelectrolyte-polyelectrolyte systems. The surface coverage increases linearly with the number of deposition steps. The rate of surface coverage increases as a function of the number of deposition step changes when the pore is blocked. The closing of the pore occurs from the pore entrance for nanoparticle-polyelectrolyte systems. In the case of polyelectrolyte-polyelectrolyte systems, the pore plug is formed inside the pore and then spreads toward the pore ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号