首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
2-Amino-1-ethylbenzimidazole (L1) adducts with copper(II), cobalt(II), and zinc(II) chelates of N,N,S tridentate tosylamino-functionalized mercaptopyrazole-containing Schiff base (H2L), resulting from condensation of 2-tosylaminoaniline with 1-phenyl-3-methyl-4-formylpyrazole-5-thiol, with the general formula [ML · L1] were obtained by electrochemical method. The structure and composition of the complexes were confirmed by the data of C, H, N elemental analysis, IR and 1H NMR spectroscopy, and magnetochemical and X-ray spectral measurements. The mononuclear structure of the copper(II) adduct with coordination bond located on the pyridine type endocyclic nitrogen atom of 2-amino-1-ethylbenzimidazole was proved by X-ray diffraction.  相似文献   

2.
The unsymmetric precursor ethyl 6-acetylpyridine-2-carboxylate (4) was synthesized from 2,6-dimethylpyridine (1). On the basis of this precursor, a new mono(imino)pyridine ligand (5) and the corresponding Co(Ⅱ) complex {2-carbethoxy-6-[1-[(2,6-diethylphenyl)imino]ethyl]pyridine}CoCl2 (6) were prepared. The crystal structure of complex indicates that the 2-carbethoxy-6-iminopyridine is coordinated to the cobalt as a tridentate ligand using [N, N, O] atoms, and the coordination geometry of the central cobalt is a distorted trigonal bipyramid, with the pyridyl nitrogen atom and the two chlorine atoms forming the equatorial plane. Being applied to the ethylene oligomedzation, this cobalt complex shows catalytic activity of 1.820× 10^4 g/mol-Cooh at 101325 Pa of ethylene at 15.5℃ for 1 h, when 1000 equiv, of methylaluminoxane (MAO) is employed as the cocatalyst.  相似文献   

3.
1INTRODUCTIONHydrazoneshavebeenattractingmuchatten-tionfromchemistsinrecentyearsbecauseoftheirbiologicalactivities,chemicalandindustrialversa-tility,andstrongtendencytochelatetotransitionmetals[1,2],lanthanidemetals[3]andmaingroupmetals[4,5].Inthehydrazonecomplexes,thehydra-zoneligandcanactasaneutralormononegativebidentateligand,orevenasadianionictridentateliganddependingonthedonoratomsoftheligandsandthereactionconditions.Ontheotherhand,variouscompoundsderivedfromphenoxyaceticacidareveryus…  相似文献   

4.
The title complex NiL(py)3, where H2L = N-salicylaldehyde-N'-phenoxyacetyl hydrazine, was prepared and characterized by X-ray diffraction. The single crystal of the title compound, Ni(C15H12N2O3)(C5H5N)3, is of monoclinic, space group P21/c with a = 11.900(1), b = 9.6855(7), c = 23.658(2)A,β = 92.357(2)°, V = 2724.5(4) A3, Z = 4, F(000) = 1176, Dc = 1.376 g/cm3, μ = 0.753 mm-1, R = 0.0332 and Wr = 0.0820. The coordination polyhedron around the nickel atom is an elongated octahedron. The basal plane consists of one phenol oxygen, one amine carbonyl oxygen and one hydrazine nitrogen atoms from the ligand L2- and one nitrogen atom from one coordinated pyridine ligand, while the axial sites are occupied by two nitrogen atoms of two coordinated pyridine ligands.  相似文献   

5.
Pseudoelement Compounds VII. [1] Crystal and Molecular Structure of Tris(ethylenediamine)nickel(II)-bis(2-methyl-4-chlorophenoxy-cyanamidoacetate) Surprisingly, in the presence of ethylenediamine 2-methyl-4-chlorphenoxy-cyanamidoactetate reacts with nickel(II) and copper(II) ions preferentially under formation of complexes of the type [M(en)3]X2. The IR spectra and the X-ray diffraction investigations corresponding to [Ni(en)3][2-Me-ClC6H3OCH2C(O)NCN]2 show that two cyanamidocarboxylate ions [RC(O)NCN]? are bonded to the complex cation through, in each case, two N? H …? O?C hydrogen bonds between NH protons of ethylenediamine ligands and the carbonyl oxygen atoms. Additionally, in the crystal weak N? H …? N?C bridges were found between the nitrile nitrogen atoms of the anions and NH protons of neighbouring complex cations.  相似文献   

6.
Pervanadyl (VO2+) complexes with N‐(aroyl)‐N′‐(picolinylidene)hydrazines (HL = Hpabh, Hpath and Hpadh; H stands for the dissociable amide hydrogen) are described. The Schiff bases were obtained by condensation of 2‐pyridine‐carboxaldehyde with benzhydrazide (Hpabh), 4‐methylbenzhydrazide (Hpath) and 4‐dimethylaminobenzhydrazide (Hpadh), respectively. The reaction of [VO(acac)2] and HL in acetonitrile in air affords the complexes of general formula [VO2L]. The diamagnetic nature and EPR silence confirm the +5 oxidation state of vanadium in these complexes. Infrared spectra of the complexes are consistent with the enolate form of the coordinated ligands. Electronic spectra show charge transfer bands in the range 486–233 nm. The complexes are redox active and display an irreversible reduction (–0.64 to –0.72 V vs. Ag/AgCl). The crystal structures of all the complexes have been determined. In each complex, the metal centre is in a distorted trigonal‐bipyramidal N2O3 coordination sphere formed by the pyridine‐N, the imine‐N and the deprotonated amide‐O donor L and two oxo groups. The planar ligand satisfies one equatorial and two axial positions. The other two equatorial positions are occupied by the two oxo groups. In the solid state, the molecules of each of the three complexes form a chain‐like arrangement via the azomethine‐H…oxo interactions. Interchain weak π‐π interactions lead to two dimensional networks for [VO2(pabh)] and [VO2(path)]. On the other hand, [VO2(padh)] forms a two‐dimensional network through interchain N‐methyl‐H…oxo interactions.  相似文献   

7.
《Polyhedron》1999,18(5):721-727
Reaction of 3-(2-pyrazinyl)pyrazole with KBH4 in a 21:1 ratio afforded the new ligand bis3, 2, 1dihydroborate [L]a bis(pyrazolyl)borate in which each pyrazolyl ring is functionalised with a pyrazin-2-yl group at the C3 position[L] is therefore a potentially chelating tetradentate ligand with two externally-directed N atoms (the pyrazinyl N4 atoms) which are available for additional metal–ion bindingleading to eg coordination polymers The crystal structure of [TlL] shows it to be a simple mononuclear complex with the Tl(I) ion coordinated in the N4 binding pocket of the ligandand the externally-directed N atoms involved only in intermolecular N H–C hydrogen-bonding interactions The two Tl–N bonds to the pyrazolyl N2 atoms (average length 270 Å) are much shorter than the bonds to the pyrazinyl N1 atoms (average length 305 Å) also there is an obvious gap in the apical position of the metal–ion coordination sphere characteristic of a stereochemically active lone pair The crystal structure of [PbL2] Et2O shows that the Pb(II) centre is nine-coordinate with two tetradentate chelating ligands and the ninth donor being a pyrazinyl N4 atom from an adjacent complex unit The molecules therefore form infinite one-dimensional chains in the crystal via bridging pyrazinyl groups The coordination geometry about the Pb(II) ions is approximately capped square antiprismatic with no obvious gap in the coordination sphere suggesting that the lone pair is stereochemically inactive.  相似文献   

8.
A binuclear terbium(III) complex of N-(2-pyridinyl)ketoacetamide (HL) was synthesized and its crystal structure determined. Each terbium(III) binds to one N,O-bidentate HL, one O,O-bidentate L and two N,μ-O,O-tridentate bridging L ligands; the coordination polyhedron is a distorted square antiprism. The pyridine N and keto O atoms of the binucleating ligand are coordinated to each Tb with the amide O acting as a bridging atom. The adjacent [Tb2(HL)2L4]2+ units are bridged by double C(R)NH…ONO2…HN(R)C hydrogen bonds to form an infinite 1-D chain, and a 2-D layer structure results from a rare near face-to-face π,π-stacking interaction between the pyridine rings of the adjacent chains. The crystal structure analysis reveals that the ligands completely shield the Ln(III) ions. Excited by the absorption band at 370?nm, the Tb(III) complex displays characteristic metal-centered fluorescence while the ligand fluorescence is completely quenched, showing that efficient ligand-to-metal energy transfer (antenna effect) occurs.  相似文献   

9.
《化学:亚洲杂志》2017,12(1):145-158
Two classes of cationic palladium(II) acetylide complexes containing pincer‐type ligands, 2,2′:6′,2′′‐terpyridine (terpy) and 2,6‐bis(1‐butylimidazol‐2‐ylidenyl)pyridine (C^N^C), were prepared and structurally characterized. Replacing terpy with the strongly σ‐donating C^N^C ligand with two N‐heterocyclic carbene (NHC) units results in the PdII acetylide complexes displaying phosphorescence at room temperature and stronger intermolecular interactions in the solid state. X‐ray crystal structures of [Pd(terpy)(C≡CPh)]PF6 ( 1 ) and [Pd(C^N^C)(C≡CPh)]PF6 ( 7 ) reveal that the complex cations are arranged in a one‐dimensional stacking structure with pair‐like PdII⋅⋅⋅PdII contacts of 3.349 Å for 1 and 3.292 Å for 7 . Density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) calculations were used to examine the electronic properties. Comparative studies of the [Pt(L)(C≡CPh)]+ analogs by 1H NMR spectroscopy shed insight on the intermolecular interactions of these PdII acetylide complexes. The strong Pd−Ccarbene bonds render 7 and its derivative sufficiently stable for investigation of photo‐cytotoxicity under cellular conditions.  相似文献   

10.
The reaction of N‐(2‐pyridyl)carbonylaniline (L) with Zn(NO3)2, CdCl2, and Hg(SCN)2 gives the following complexes: [Zn(L)2](NO3)2, [Cd(L)2Cl2], and [Hg(L)(SCN)2]. The new complexes were characterized by elemental analyses and IR‐, 1H‐, 13C‐NMR spectroscopy. The crystal structure of the [Hg(L)(SCN)2] was determined by single crystal X‐ray analysis. The monomeric complex is built up of a Hg(SCN)2 unit with one N‐(2‐pyridyl)carbonylaniline (L) ligand coordinated to the Hg atom via the ring pyridinic nitrogen atom and the carbonyl oxygen atom forming a five‐membered chelate ring. The Hg atom has a distorted tetrahedral environment. There is π‐π stacking interaction between the parallel aromatic rings belonging to adjacent chain as planar species in which the mean molecular planes are close to parallel and separated by a distance of ~ 3.5Å, close to that of the planes in graphite. The coordinated N‐(2‐pyridyl)carbonylaniline (L) molecule is involved in hydrogen bonding acting as hydrogen‐bond donors with S and N atoms from SCN ligand as potential hydrogen‐bond acceptors. There is a shortest intermolecular contacts between the S and N atoms. The hydrogen bonding and shortest intermolecular contacts between the S and N atoms yields infinite chains parallel to the crystallographic vector c. Each molecule is bonded to two neighbors.  相似文献   

11.
The title compound, [Cu(C7H5O3)2(C6H6N2O)2(H2O)2], is a two‐dimensional hydrogen‐bonded supramolecular complex. The CuII ion resides on a centre of symmetry and is in an octahedral coordination environment comprising two pyridine N atoms, two carboxylate O atoms and two O atoms from water molecules. Intermolecular N—H...O and O—H...O hydrogen bonds produce R22(4), R22(8) and R22(15) rings which lead to one‐dimensional polymeric chains. An extensive two‐dimensional network of N—H...O and O—H...O hydrogen bonds and C—H...π interactions are responsible for crystal stabilization.  相似文献   

12.
Crystal Structures of trans ‐[NiBr2(pyridine)4] and [Ni(HNPEt3)4]I2 Turquoise single crystals of trans‐[NiBr2(pyridine)4] have been obtained by the reaction of excess pyridine with nickel(II) bromide/diacetonealcohol. According to the crystal structure determination the nickel atom is octahedrally coordinated by the two bromine atoms in trans‐position and by the nitrogen atoms of the pyridine molecules. Space group Pna21, Z = 4, lattice dimensions at 20 °C: a = 1592.9(2), b = 943.8(1), c = 1413.0(2) pm, R1 = 0.0492. Dark blue single crystals of the phosphoraneimine complex [Ni(HNPEt3)4]I2 have been obtained from NiI2/H2O with excess Me3SiNPEt3 and subsequent recrystallization from acetonitrile. According to the crystal structure determination the nickel atom is tetrahedrally coordinated by the nitrogen atoms of the HNPEt3 molecules. The iodide ions are connected via N–H…I contacts with the cation to form an ion triple. Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1934.9(2), b = 1078.3(1), c = 1966.3(2) pm, β = 111.040(8)°; R1 = 0.043.  相似文献   

13.
Han-Yuan Gong 《Tetrahedron》2009,65(1):87-6563
By means of UV-vis and 1H NMR titrations and X-ray crystallography, complexation of tetramethylazacalix[4]pyridine L1 and tetramethylazacalix[2]arene[2]pyridine L2 with metal ions was studied. While no interaction was observed with alkali and alkaline earth metal ions, both ligands have been found to act as powerful and selective macrocyclic hosts to complex a number of transition and heavy metal ions. Due to the intrinsic nature of the bridging nitrogen atoms that can adopt different electronic configurations and form varied degrees of conjugations with their adjacent pyridine rings, tetramethylazacalix[4]pyridine L1 regulated its conformation and cavity structure to best fit the guest metal ion species, yielding a 1:1 square planar L1-Mn+ complex with binding constants log K1:1 ranging from 2.7(1) to 8.2(8).  相似文献   

14.
Ruthenium monoterpyridine complexes, [1]+ and [2]2+, with 2,6-bis(benzoxazol-2-yl)pyridine as an ancillary ligand, L, have been synthesized and characterized by UV–Vis, FT-IR and 1H NMR spectroscopic techniques. The formulations of the complexes were confirmed by the single crystal structure of their perchlorate salts. In both complexes, the RuII center is hexa-coordinated in a distorted geometry. In complex [1]+, the ancillary ligand L behaves as a bidentate ligand; in [2]2+, however, it binds the metal center as a tridentate ligand. The central pyridine nitrogen of terpyridine (Np,trpy) is in a cis position with respect to the central pyridine nitrogen of the ancillary ligand (Np,benz) in complex [1]+ and in a trans-position in complex [2]2+. The cis orientation of Np,trpy and Np,benz in complex [1]+ forces L to behave as bidentate. The quasi-reversible RuII/RuIII couple appears at 0.90 and 1.44 V versus SCE in the case of complex [1]+ and [2]2+, respectively. [1]+, in the presence of aqueous AgNO3, affords [2]2+ through an intramolecular dissociative interchange pathway.  相似文献   

15.
The crystal structure of the title complex, [Cd(tsac)2(py)3], has been determined by single crystal X‐ray diffractometry. It crystallizes in the monoclinic space group C2/c with Z = 8.The Cd 2+ cation is at the center of a square‐ bipyramidal environment, equatorially coordinated to two thiosaccharinate anions through their sulfur atoms and the nitrogen atom of one of them acting as a bidentate ligand. Nitrogen atoms of pyridine molecules occupy the fourth equatorial position and the two axial ones. The infrared and electronic spectra of the complex were briefly discussed. Its thermal stability was investigated by thermogravimetric and differential thermal analysis.  相似文献   

16.
Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (pH 7.0) or acetate (from buffer,pH 4-5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X = Cl 1, NCS 2, CH3COO 3, ClO4 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,N-dimethylethylenediamine and N,N’-dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2(L5) = N,N-dimethyl-N’,N’-bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N’-dimethyl-N,N’-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively. Interestingly, for the latter complex there are two different molecules present in the same unit cell containing the methyl groups of the ethylenediamine fragmentcis to each other in one molecule andtrans to each other in the other. The ligand field and EPR spectra of the model complexes reveal square-based geometries even in solution. The electrochemical and chemical means of generating novel radical species of the model complexes, analogous to the active form of the enzyme is presently under investigation.  相似文献   

17.
Seven new pyridine dicarboxamide ligands H2L(1-7) have been synthesised from condensation reactions involving pyridine-2,6-dicarboxylic acid (H2dipic), pyridine-2,6-dicarbonyl dichloride or 2,6-diaminopyridine with heterocyclic amine or carboxylic acid precursors. Crystallographic analyses of N,N'-bis(2-pyridyl)pyridine-2,6-dicarboxamide monohydrate (H2L8 x H2O), N,N'-bis[2-(2-pyridyl)methyl]pyridine-2,6-dicarboxamide and N,N'-bis[2-(2-pyridyl)ethyl]pyridine-2,6-dicarboxamide monohydrate revealed extensive intramolecular hydrogen bonding interactions. 2,6-Bis(pyrazine-2-carboxamido)pyridine (H2L6) and 2,6-bis(pyridine-2-carboxamido)pyridine (H2L7) reacted with copper(II) acetate monohydrate to give tricopper(II) complexes [Cu3(L)2(mu2-OAc)2]. X-Ray crystallography confirmed deprotonation of the amidic nitrogen atoms and that the (L6,7)2- ligands and acetate anions hold three copper(II) ions in approximately linear fashion. H2L8. Reacted with copper(II) tetrakis(pyridine) perchlorate to give [Cu(L8)(OH2)]2 x 2H2O, in which (L8)2- was tridentate through the nitrogen atoms of the central pyridine ring and the deprotonated carboxamide groups at one copper centre, with one of the terminal pyridyl rings coordinating to the other copper atom in the dimer. The corresponding reaction using H2L7 gave [Cu3(L7)2(py)2][ClO4]2, which transformed during an attempted recrystallisation from ethanol under aerobic conditions to a tetracopper(II) complex [Cu4(L7)2(L7-O)2].  相似文献   

18.
Formation of Ni–polymeryl propagating species upon the interaction of three salicylaldiminato nickel(II) complexes of the type [(N,O)Ni(CH3)(Py)] (where (N,O)=salicylaldimine ligands, Py=pyridine) with ethylene (C2H4/Ni=10:30) has been studied by 1H and 13C NMR spectroscopy. Typically, the ethylene/catalyst mixtures in [D8]toluene were stored for short periods of time at +60 °C to generate the [(N,O)Ni(polymeryl)] species, then quickly cooled, and the NMR measurements were conducted at ?20 °C. At that temperature, the [(N,O)Ni(polymeryl)] species are stable for days; diffusion 1H NMR measurements provide an estimate of the average length of polymeryl chain (polymeryl=(C2H4)nH, n=6–18). At high ethylene consumptions, the [(N,O)Ni(polymeryl)] intermediates decline, releasing free polymer chains and yielding [(N,O)Ni(Et)(Py)] species, which also further decompose to form the ultimate catalyst degradation product, a paramagnetic [(N,O)2Ni(Py)] complex. In [(N,O)2Ni(Py)], the pyridine ligand is labile (with activation energy for its dissociation of (12.3±0.5) kcal mol?1, ΔH298=(11.7±0.5) kcal mol?1, ΔS298 =(?7±1) cal K?1 mol?1). Upon the addition of nonpolar solvent (pentane), the pyridine ligand is lost completely to yield the crystals of diamagnetic [(N,O)2Ni] complex. NMR spectroscopic analysis of the polyethylenes formed suggests that the evolution of chain‐propagating species ends up with formation of polyethylene with predominately internal and terminal vinylene groups rather than vinyl groups.  相似文献   

19.
The reactions between five ferrocenyl derivatives containing both a CO and at least an imidazole or pyridine nitrogen atom and AgPF6, AgOTf, or [Cu(NCCH3)4]PF6 precursors were studied. The ligand {[bis(2-pyridyl)amino]carbonyl}ferrocene (L3), derived from (2-pyridyl)amine, favored tetrahedral coordination of Ag+ (with two ligands) and of Cu+ (with two acetonitrile ligands left from the precursor). In all the other ligands, both metal centers coordinated linearly to two ligands, preferring the imidazole or pyridinic nitrogen to other nitrogen atoms (amine) or oxygen donors.When the counter anions were triflate, the crystal structure showed a dimerization of the complex, with the ferrocenyl moieties occupying cis positions, by means of a weak Ag?Ag interaction. This was shown experimentally in the crystal structure of complex [Ag(L1)2]OTf (L1 = ferrocenyl imidazole) and in the presence of peaks corresponding to {Ag2(L2)3(OTf)}+ and {Ag2(L2)4(OTf)}+ in the mass spectra of [Ag(L2)2]OTf (L2 = ferrocenyl benzimidazole). In all complexes containing PF6, there was no evidence for dimerization. Indeed, in the crystal structure of [Ag(L2)2]PF6, the ferrocenyl moieties occupy trans positions and the metal centers are far from each other. DFT calculations showed that the energy of the cis and trans conformers is practically the same and the balance of crystal packing forces leads to dimerization when triflate is present.  相似文献   

20.
The targeted cleavage of the C−N bonds of alkyl primary amines in sustainable compounds of biomass according to a metal-free pathway and the conjunction of nitrogen in the synthesis of imidazo[1,5-a]pyridines are still highly challenging. Despite tremendous progress in the synthesis of imidazo[1,5-a]pyridines over the past decade, many of them can still not be efficiently prepared. Herein, we report an anomeric stereoauxiliary approach for the synthesis of a wide range of imidazo[1,5-a]pyridines after cleaving the C−N bond of d -glucosamine (α-2° amine) from biobased resources. This new approach expands the scope of readily accessible imidazo[1,5-a]pyridines relative to existing state-of-the-art methods. A key strategic advantage of this approach is that the α-anomer of d -glucosamine enables C−N bond cleavage via a seven-membered ring transition state. By using this novel method, a series of imidazo[1,5-a]pyridine derivatives (>80 examples) was synthesized from pyridine ketones (including para-dipyridine ketone) and aldehydes (including para-dialdehyde). Imidazo[1,5-a]pyridine derivatives containing diverse important deuterated C(sp2)−H and C(sp3)−H bonds were also efficiently achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号