首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The analysis, design, realization, and measurements of a novel intensity modulator are reported. The operating principle is based on mode coupling between a passive low-loss SiON waveguide and an electro-optic high-loss polymer waveguiding structure. Matching the waveguides is critical and results in severe demands for the technology. Extended simulations by the Coupled Mode Theory, the Leaky Wave Model, and Finite Difference Beam Propagation Method resulted in the design of several modulator structures. After realization, modulation could be demonstrated at 632 nm and at 1523 nm using lossy waveguiding modes and surface plasmon modes.  相似文献   

2.
This paper reports the design and principles of two dimensional rod-type photonic crystal (PhC) line defect waveguides for bandgap based optical waveguiding, static modulation and high speed dynamic optical switchings. Experiments were carried out for both high aspect ratio and slab type configurations. The differences in waveguiding mechanisms for the two configurations resulting from the presence of bottom cladding systems, without out-of-plane symmetries are compared for their advantages and disadvantages. In particular, the designs of non-top-clad optical waveguides of layout sizes within micrometers and operational frequencies centered at the optical communication wavelength of 1550 nm, were investigated for the feasibility of large scale integration by batch fabrication process techniques – such as sub-micrometer optical lithography etc. Based on such techniques, specifically designed dispersions of line defect PhC waveguides within a missing row of PhC rods were accompanied by optical testing structures of suitable coupling modes. Optical measurements of waveguiding coefficients were therefore enabled for the different configurations, together with further static and dynamic modulations. PACS 42.70.Qs  相似文献   

3.
《Current Applied Physics》2018,18(7):785-792
Highly crystalline undoped and Ga-doped indium oxide nanorods with square-shaped faceted morphology were fabricated through the vapor-liquid-solid process at moderate temperature. Effects of Ga incorporation on the growth rate, morphology, and crystallinity of the nanostructures were evaluated by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Defect structure and waveguiding behavior of the 1-D In2O3 nanostructures have been studied using microRaman and micro photoluminescence spectroscopies. The appearance of several resonant modes superposed over the broad room temperature micro-photoluminescence spectra of the nanostructures demonstrates their waveguiding behaviors. While the pristine or undoped In2O3 nanostructures of 20–150 nm widths revealed Fabry-Pérot resonance modes, the Ga-incorporated nanostructures of 20–100 nm width revealed whispering gallery modes due to their smaller widths. The quality factor (Q) of the resonators was estimated to be about 20.86 and 188.79 for the pristine and Ga-incorporated nanostructures, respectively, indicating a huge enhancement due to Ga incorporation. The increment in the Q factor on Ga incorporation in In2O3 nanorods opens up the possibility of their utilization for the development of new optical transmitters and resonators, and fabrication of nanoscopic lasing devices.  相似文献   

4.
Virtually all electromagnetic waveguiding structures support a multiplicity of modes. Nevertheless, to date, an experimental method for unique decomposition of the fields in terms of the component eigenmodes has not been realized. The fundamental problem is that all current attempts of modal decomposition do not yield phase information. Here we introduce a noninterferometric approach to achieve modal decomposition of the fields at the output of a general waveguiding structure. The technique utilizes a mapping of the two-dimensional field distribution onto the one-dimensional space of waveguide eigenmodes, together with a phase-retrieval algorithm to extract the amplitudes and phases of all the guided vectorial modes. Experimental validation is provided by using this approach to examine the interactions of 16 modes in a hollow-core photonic-band gap fiber.  相似文献   

5.
We investigate waveguiding of ultraslow light pulses in an atomic Bose-Einstein condensate. We show that under the conditions of off-resonant electromagnetically induced transparency, waveguiding with a few ultraslow modes can be realized. The number of modes that can be supported by the condensate can be controlled by means of experimentally accessible parameters. Propagation constants and the mode conditions are determined analytically using a Wentzel-Kramers-Brillouin analysis. Mode profiles are found numerically.  相似文献   

6.
The properties of longitudinal and transverse modes of an open optical resonator containing layers of a metamaterial with negative refractive index are studied. Due to the presence of these layers, the metaresonator acquires unique properties compared to a conventional open resonator. Eigenmodes of the metaresonator are studied in which the properties depend on the average dispersion and the average diffraction, which may be either positive, negative, or zero. The conditions of the existence and profiles of the waveguiding modes are obtained. The resonator with zero average diffraction is of particular interest. It is shown that, in this case, the waveguiding mode may have an arbitrary amplitude profile. Under these conditions, the discrete set of the transverse modes becomes continuous, and the eigenfrequencies become independent of the transverse amplitude profile. The resonator’s stability conditions are derived based on the ray-matrix method and diffraction theory. It is shown that insertion of a metamaterial into the resonator substantially affects the region of stability and existence of the waveguiding modes. In particular, the unstable empty resonator can thus be rendered stable.  相似文献   

7.
We have studied the waveguiding effect in a 2D metal–dielectric–metal (MDM) grating structure formed on a quartz substrate. The grating was first formed via e-beam lithography and subsequently covered by Ag/MgF2/Ag MDM films. At a pitch of 300 nm in both x- and y-directions, low reflectance and transmittance were observed in the UV–VIS range, indicating efficient coupling of normal incident light into waveguiding modes. As evidence, we measured the spectrum of the waveguide from the edge, and the bandwidth of the spectrum was as narrow as ∼74 nm. The bandwidth of the waveguide can be further improved by increasing the MDM stack number. In addition, the bandwidth can also be widened by increasing the pitch of the structure. The physical mechanism underlying the phenomena was analyzed and experimentally confirmed. Such effect could be useful in many applications, such as DFB lasers, solar cells, waveguides, and light emitting devices.  相似文献   

8.
We describe the theory and experimental realization of an ultrafast phase-matched electrooptic modulator, working with 486 nm light and a modulation frequency of 84 GHz. To achieve phase matching for arbitrarily high modulation frequencies the laser beam is guided with several internal total reflections along a zig-zag path through a LiTaO3 crystal. The method was studied experimentally with a 84 GHz modulator and a highly stable 486 nm dye laser. The maximum modulation index of this setup was about 5.0%. Beat signals between either the first- or the second-order sidebands and another laser were observed. This modulator was used to directly measure the 671 GHz 1S–2S isotope shift of hydrogen and deuterium with radio-frequency accuracy.  相似文献   

9.
We have experimentally observed the eigenmode splitting due to coupling of the evanescent defect modes in three-dimensional photonic crystals. The splitting was well explained with a theory based on the classical wave analog of the tight-binding (TB) formalism in solid state physics. The experimental results were used to extract the TB parameters. A new type of waveguiding in a photonic crystal was demonstrated experimentally. A complete transmission was achieved throughout the entire waveguiding band. We have also obtained the dispersion relation for the waveguiding band of the coupled periodic defects from the transmission-phase measurements and from the TB calculations.  相似文献   

10.
Integrated-optical waveguides with a nematic liquid-crystal 4-cyano-4’-pentylbiphenyl (5CB) waveguiding layer have been investigated for different polarizations of incident laser radiation and under a pulsed-periodic electric field. A dependence of the damping coefficient of waveguide modes and the sizes of quasi-steady-state irregularities of nematic liquid-crystal layer on the linear polarization of laser radiation and the strength of pulsed-periodic field has been found experimentally. The correlation length is estimated for waveguiding layer irregularities. The waveguide scattering method has provided a resolution in correlation length exceeding the classical resolution limit by approximately an order of magnitude. The observed decrease in the damping coefficient of waveguide modes and irregularity sizes under external field is explained by the decrease in the correlation length of director fluctuations.  相似文献   

11.
Usually nonlinear response of metals is neglected in the study of plasmonic waveguiding structures. Recent prediction of strong third-order optical response of metals due to ponderomotive forces opens up novel possibilities for utilizing this effect in the design of active plasmonic devices. We discuss the possibility of implementation of nonlinear response of metals in the design of plasmonic coupler. We analyze the structure and dispersions of linear and nonlinear guided plasmonic modes of two coupled thin metallic films and predict bifurcations of symmetry breaking.  相似文献   

12.
We report on the monolithic integration of frequency converter and amplitude modulator in a single lithium niobate (LiNbO3) chip by the use of focussed ultrashort laser pulses. The waveguiding structures are obtained by femtosecond-laser induced internal modification and the electrodes are ablated out of a gold-layer sputtered onto the sample surface.  相似文献   

13.
Kirchner MS  Diddams SA 《Optics letters》2010,35(19):3264-3266
We construct a line-by-line pulse shaper using a grism (grating plus prism) dispersive element, which provides constant angular dispersion over 13.4 THz centered at ~311 THz (965 nm). When combined with a dual-mask liquid crystal modulator, this grism-based shaper is capable of line-by-line amplitude and phase control of over 600 modes of a 21 GHz stabilized optical frequency comb.  相似文献   

14.
Waveguide modes of microstructure fibers with a hollow core and a two-dimensionally periodic cladding are studied experimentally and theoretically. The spectrum of modes guided in the hollow core of these fibers displays isolated maxima, indicating that waveguiding is supported due to the high reflectivity of the fiber cladding within photonic band gaps. The main properties of the spectrum of modes guided in a hollow core of a photonic-crystal fiber and radiation intensity distribution in these modes are qualitatively explained in terms of the model of a periodic coaxial waveguide.  相似文献   

15.
Diddams SA  Ma LS  Ye J  Hall JL 《Optics letters》1999,24(23):1747-1749
We introduce a novel broadband optical frequency comb generator consisting of a parametric oscillator with an intracavity electro-optic phase modulator. The parametric oscillator is pumped by 532-nm light and produces near-degenerate signal and idler fields. The modulator generates a comb structure about both the signal and the idler. Coupling between the two families of modes results in a dispersion-limited comb that spans 20 nm (5.3 THz). A signal-to-noise ratio of >30 dB in a 300-kHz bandwidth is observed in the beat frequency between individual comb elements and a reference laser.  相似文献   

16.
We demonstrate optical waveguiding of a probe beam at 980 nm by a soliton beam at 780 nm in an organic photorefractive monolithic glass. Both planar and circular waveguides induced by one- and two-dimensional spatial solitons formed as a result of orientationally enhanced photorefractive nonlinearity are produced in the organic glass. Possibilities for increasing the speed of waveguide formation are discussed.  相似文献   

17.
This paper presents results on the numerical and experimental studies of focusing and waveguiding of the lowest anti-symmetric Lamb wave in micro-fabricated piezoelectric phononic plates. The phononic structure was based on an AT-cut quartz plate and consisted of a gradient-index phononic crystal (GRIN PC) lens and a linear phononic plate waveguide. The band structures of the square-latticed AT-cut quartz phononic crystal plates with different filling ratios were analyzed using the finite element method. The design of a GRIN PC plate lens which is attached with a linear phononic plate waveguide is proposed. In designing the waveguide, propagation modes in square-latticed PC plates with different waveguide widths were studied and the results were served for the experimental design. In the micro-fabrication, deep reactive ion etching (Deep-RIE) process with a laboratory-made etcher was utilized to fabricate both the GRIN PC plate lens and the linear phononic waveguide on an 80 μm thick AT-cut quartz plate. Interdigital transducers were fabricated directly on the quartz plate to generate the lowest anti-symmetric Lamb waves. A vibro-meter was used to detect the wave fields and the measured results on the focusing and waveguiding of the piezoelectric GRIN PC lens and waveguide are in good accordance with the numerical predictions. The results of this study may serve as a basis for developing an active micro plate lens and related devices.  相似文献   

18.
We have determined the structure of a colloidal fluid confined in a gap between two walls by making use of the waveguiding properties of the gap at x-ray wavelengths. The method is based on an analysis of the coupling of waveguide modes induced by the density variations in the confined fluid. Studies on suspensions confined within gaps of a few hundred nanometers showed strongly selective mode coupling effects, indicative of an ordering of the colloidal particles in layers parallel to the confining walls.  相似文献   

19.
An optimal design of a slot waveguide is presented for realizing an ultrafast optical modulator based on a 220 nm silicon wafer technology. The recipe is to maximize the confinement and interaction between optical power supported by the waveguide and electric field applied through metallic electrodes. As height of waveguide is fixed at 220 nm, the waveguide and slot width are optimized to maximize the confinement factor of optical power. Moreover, metal electrodes tend to make the waveguide lossy, their optimal placement is calculated to reduce the optical loss and enhance the voltage per unit width in the slot. Performance of an optimally designed slot waveguide with metal electrodes as ultrafast modulator is also discussed.  相似文献   

20.
We study theoretically, by means of layer-multiple scattering techniques, the propagation of elastic waves through finite slabs of phononic crystals consisting of metallic spheres in polyester matrix, embedded in air. We focus on the study of modes localized on the surfaces of the structure, investigating the physical parameters which influence and determine their appearance. Our results reveal the existence of absolute phononic frequency gaps in these finite structures, and point out the possibility, under an appropriate choice of the parameters, of tunable regions of frequency free of propagating and/or surface-localized modes. This could be very useful in the design of devices related to frequency filtering, waveguiding, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号