首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyrme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in arXiv:0910.4979 by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N2LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A link to a downloadable Mathematica notebook containing the novel density-dependent couplings is provided.  相似文献   

4.
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this report, we present a selection of new reaction observables in dissipative collisions particularly sensitive to the symmetry term of the nuclear Equation of State (Iso-EoS). We will first discuss the Isospin Equilibration Dynamics. At low energies, this manifests via the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation, with the symmetry term acting as a restoring force. At higher beam energies, Iso-EoS effects will be seen in Imbalance Ratio Measurements, in particular from the correlations with the total kinetic energy loss. For fragmentation reactions in central events, we suggest to look at the coupling between isospin distillation and radial flow. In Neck Fragmentation reactions, important Iso-EoS information can be obtained from the correlation between isospin content and alignment. The high density symmetry term can be probed from isospin effects on heavy ion reactions at relativistic energies (few AGeV range). Rather, isospin sensitive observables are proposed from nucleon/cluster emissions, collective flows and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also suggested. A large symmetry repulsion at high baryon density will also lead to an “earlier” hadron-deconfinement transition in n-rich matter. A suitable treatment of the isovector interaction in the partonic EoS appears very relevant.  相似文献   

5.
The enhancement factor K in the electric-dipole sum rule for some realistic models of symmetrical nuclear matter is calculated using variational theory. The nuclear-matter wave function used contains central, spin, isospin, tensor and spin-orbit pair correlations. The non-central correlations, particularly the tensor one, give the major contribution to K. At experimental equilibrium density K. turns out to be ≈ 1.8, of which 65% comes from OPEP and 30% from the short-range part of the interaction. The two-pion-exchange three-nucleon interaction contributes ≈ 0.2% and is cancelled, to a large extent, by the contribution due to the intermediate-range two-body potential. The relationship of the summed oscillator strength with the effective mass is also discussed.  相似文献   

6.
A recently developed formulation for a direct treatment of the equations for two- and three-nucleon bound states as set of coupled equations of scalar functions depending only on vector momenta is extended to three-nucleon scattering. Starting from the spin-momentum dependence occurring as scalar products in two- and three-nucleon forces together with other scalar functions, we present the Faddeev multiple scattering series in which order by order the spin degrees can be treated analytically leading to 3D integrations over scalar functions depending on momentum vectors only. Such formulation is especially important in view of awaiting extension of 3N Faddeev calculations to projectile energies above the pion production threshold and applications of chiral perturbation theory 3N forces, which are to be most efficiently treated directly in such three-dimensional formulation without having to expand these forces into a partial-wave basis.  相似文献   

7.
The energy per particle BA in nuclear matter is calculated up to high baryon density in the whole isospin asymmetry range from symmetric matter to pure neutron matter.The results,obtained in the framework of the Brueckner-Hartree-Fock approximation with two-and three-body forces,confirm the well-known parabolic dependence on the asymmetry parameterβ=(N?Z)/A(β^2 law)that is valid in a wide density range.To investigate the extent to which this behavior can be traced back to the properties of the underlying interaction,aside from the mean field approximation,the spin-isospin decomposition of BA is performed.Theoretical indications suggest that theβ^2 law could be violated at higher densities as a consequence of the three-body forces.This raises the problem that the symmetry energy,calculated according to theβ^2 law as a difference between BA in pure neutron matter and symmetric nuclear matter,cannot be applied to neutron stars.One should return to the proper definition of the nuclear symmetry energy as a response of the nuclear system to small isospin imbalance from the Z=N nuclei and pure neutron matter.  相似文献   

8.
Momentum and density dependence of single-nucleon potential uτ (k, ρ, β) is analyzed using a density dependent finite range effective interaction of the Yukawa form. Depending on the choice of the strength parameters of exchange interaction, two different trends of the momentum dependence of nuclear symmetry potential are noticed which lead to two opposite types of neutron and proton effective mass splitting. The 2nd-order and 4th-order symmetry energy of isospin asymmetric nuclear matter are expressed analytically in terms of the single-nucleon potential. Two distinct behavior of the density dependence of 2nd-order and 4th-order symmetry energy are observed depending on neutron and proton effective mass splitting. It is also found that the 4th-order symmetry energy has a significant contribution towards the proton fraction of β-stable npeμ matter at high densities.  相似文献   

9.
A. Nogga 《Few-Body Systems》2008,43(1-4):137-142
We report on predictions for binding energies of light nuclei and hypernuclei based on chiral nuclear interactions. We discuss the pattern of convergence with increasing orders of the chiral expansion. Especially, we study the residual dependence on the cut-offs, contributions of three-nucleon forces and first predictions for p-shell nuclei.  相似文献   

10.
The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular, the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.  相似文献   

11.
《Nuclear Physics A》1988,485(2):233-257
Isoscalar (T = 0) and isovector (T = 1) giant monopole resonances are studied using a localscale version of the ATDHF theory developed on the basis of a rigorous energy-density functional approach. Due to the strong coupling between the bulk and surface density vibrations, the monopole collective motion is split into four normal modes. Two of them, lower in energy, correspond to scaling-type density vibrations. The other two are of antiscaling-type in which the nuclear surface oscillates opposite in phase to the scaling-type vibrations. Excitation energies, transition densities, T = 0 and T = 1 energy weighted sum rules and other properties of breathing even-even nuclei are calculated using different Skyrme-type effective forces. The strong sensitivity of the antiscaling-type vibrations to the particular form of the approximate energy-density functionals is demonstrated.  相似文献   

12.
The eigenfrequencies of the isovector nuclear vibrations, whose excitation strengths exhaust the classical energy weighted sum rule value, are estimated by making use of various sum rules. The less model dependent forms of the variations of isovector nuclear density and average field under the vibrations are also obtained in the sum rule approach, and used to estimate the isovector effective charges and their momentum transfer dependence, isospin impurity and the correction to the Coulomb energy difference.  相似文献   

13.
We discuss a new mechanism of splitting of giant multipole resonances (GMR) in spherical neutron-rich nuclei. This mechanism is associated with the basic properties of an asymmetric drop of nuclear Fermi liquid. In addition to well-known isospin shell-model predictions, our approach can be used to describe the GMR splitting phenomenon in the wide nuclear-mass region A ~ 40–240. For the dipole isovector modes, the splitting energy, the relative strength of resonance peaks, and the contribution to the energy-weighted sum rules are in agreement with experimental data for the integrated cross sections for photonuclear (γ, n) and (γ, p) reactions.  相似文献   

14.
15.
Within an isospin and momentum dependent transport model, the dynamics of isospin particles(nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of m_n~*=m_p~* and m_n~* m_p~*(m_n~* m_p~*). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of ~(112)Sn+~(112)Sn and ~(124)Sn+~(124)Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail(larger than 20 Me V). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ_s =0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions.  相似文献   

16.
In the Einstein–Cartan theory of torsion-free gravity coupling to massless fermions, the four-fermion interaction is induced and its strength is a function of the gravitational and gauge couplings, as well as the Immirzi parameter. We study the dynamics of the four-fermion interaction to determine whether effective bilinear terms of massive fermion fields are generated. Calculating one-particle-irreducible two-point functions of fermion fields, we identify three different phases and two critical points for phase transitions characterized by the strength of four-fermion interaction: (1) chiral symmetric phase for massive fermions in strong coupling regime; (2) chiral symmetric broken phase for massive fermions in intermediate coupling regime; (3) chiral symmetric phase for massless fermions in weak coupling regime. We discuss the scaling-invariant region for an effective theory of massive fermions coupled to torsion-free gravity in the low-energy limit.  相似文献   

17.
We study the chiral behavior of the nucleon and Δ-isobar masses within a manifestly covariant chiral effective-field theory, consistent with the analyticity principle. We compute the πN and πΔ one-loop contributions to the mass and field-normalization constant, and find that they can be described in terms of universal relativistic loop functions, multiplied by appropriate spin, isospin and coupling constants. We show that these manifestly relativistic one-loop corrections, when properly renormalized, obey the chiral power-counting and vanish in the chiral limit. The results including only the πN-loop corrections compare favorably with the lattice QCD data for the pion-mass dependence of the nucleon and Δ masses, while inclusion of the πΔ loops tends to spoil this agreement.  相似文献   

18.
The formalism to include a three-nucleon force into three-nucleon continuum calculations is presented. First numerical results, obtained in momentum space, are shown. The two- and three-nucleon forces have been restricted to act only in the1 S 0 and3 S 1-3 D 1 partial-wave states. As two-nucleon interaction the Bonn-B potential and as three-nucleon interaction the Tucson-Melbourne two-pion exchange model has been used.  相似文献   

19.
《Nuclear Physics A》1999,646(1):125-138
This paper is devoted to the interplay between p-wave, s-wave pion-nucleon/nucleus interaction and in-medium pion-pion interaction with special emphasis on the role of the nuclear pionic scalar density driving a large amount of chiral symmetry restoration. In particular we show that the πNN coupling constant and the Goldberger-Treiman relation are preserved in the nuclear medium under certain conditions. We also discuss the related problem of the in-medium pion-pion strength function.  相似文献   

20.
Within the framework of quasiparticle random phase approximation (QRPA), Pyatov-Salamov method [23] for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state were investigated with the inclusion of the pairing correlations between nucleons for the medium and heavy mass regions: 80 <A < 90, 102 <A < 124, and 204 <A < 214. It was determined that the influence of the pairing interaction between nucleons on the isospin admixtures in the ground state and the isospin structure of the IAR state is more pronounced for the light isotopes (N ≈ Z) of the investigated nuclei  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号