首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods for the preparation of geometrically defined enoxy(trichlorosilanes) derived from ethyl ketone enolates have been developed. The addition of enoxy(trichlorosilanes) (trichlorosilyl enolates) to aldehydes proceeds with good yields in the presence of catalytic amounts of chiral phosphoramides. The reaction of Z-trichlorosilyl enolates to aryl aldehydes affords aldol products with good to excellent diastereo- and enantioselectivities. Phosphoramide-catalyzed aldol additions lacked substrate generality providing modest selectivities with unsaturated and aliphatic aldehydes. In all cases, the phosphoramide-catalyzed aldol addition of E-trichlorosilyl enolates to aldehydes provided good yields with moderate to good stereoselectivities.  相似文献   

2.
The development of efficient methods for the asymmetric Mukaiyama aldol reaction in aqueous solution has received great attention. We have developed a new series of chiral lanthanide-containing complexes that produce Mukaiyama aldol products with outstanding enantioselectivities. In this paper, we describe an optimized ligand synthesis, trends in stereoselectivity that result from changing lanthanide ions, and an exploration of substrate scope that includes aromatic and aliphatic aldehydes and silyl enol ethers derived from aromatic and aliphatic ketones.  相似文献   

3.
《Tetrahedron》2006,62(2-3):311-316
A convenient method for proline-catalyzed asymmetric aldol reactions using synthons of straight-chain aliphatic aldehydes, and aldehydes bearing a 1,3-dithiane moiety at the β-position, has been developed. This method was successfully applied to the synthesis of (−)-(5R,6S)-6-acetoxyhexadecanolide, an oviposition attractant pheromone of the female Culex mosquito.  相似文献   

4.
Novel organic molecules containing an l-proline amide moiety and a terminal hydroxyl for catalyzing direct asymmetric aldol reactions of aldehydes in neat acetone are designed and prepared. Catalyst 3d, prepared from l-proline and (1S,2S)-diphenyl-2-aminoethanol, exhibits high enantioselectivities of up to 93% ee for aromatic aldehydes and up to >99% ee for aliphatic aldehydes. A theoretical study of transition structures demonstrates the important role of the terminal hydroxyl group in the catalyst in the stereodiscrimination. Our results suggest a new strategy in the design of new organic catalysts for direct asymmetric aldol reactions and related transformations because plentiful chiral resources containing multi-hydrogen bond donors, for example, peptides, might be adopted in the design.  相似文献   

5.
Asymmetric aldol reactions of aliphatic ketones or aldehydes with aromatic aldehydes or isatins were catalyzed by a very simple and flexible N-(2,6-difluorophenyl)-l-valinamide. Interestingly, stereochemical course of the reaction of hydroxyacetones or α-branched aliphatic aldehydes as aldol donors was different from that of cycloalkanones.  相似文献   

6.
A series of dipeptide analogues consisting of proline, phenylalanine and aniline- or phenol-fluorine derivatives were synthesized. Their catalytic ability was evaluated in the intermolecular asymmetric aldol reaction, both in organic and aqueous media. Aniline-fluorine derivatives proved to be superior and the best results were obtained, when 2-CF3 aniline was employed. A diverse substrate scope consisting of both aromatic and aliphatic aldehydes, as well as different ketones was demonstrated, where aromatic aldehydes afforded products in high yields (up to 100%) with excellent diastereo- (up to 95:5) and enantioselectivities (up to 97%), whereas the aliphatic aldehydes afforded also excellent selectivities, but relatively low yield. A simple addition of fluorine to a dipeptide analogue affords organocatalysts with new interesting properties that can catalyze the aldol reaction more efficiently.  相似文献   

7.
Doyle MP  Kundu K  Russell AE 《Organic letters》2005,7(23):5171-5174
[reaction: see text] Methyl 3-(trialkylsilanyloxy)-2-diazo-3-butenoate undergoes Lewis acid-catalyzed Mukaiyama aldol addition with aromatic and aliphatic aldehydes in the presence of low catalytic amounts of Lewis acids in nearly quantitative yields. Scandium(III) triflate is the preferred catalyst and, notably, addition proceeds without decomposition of the diazo moiety. Diazoacetoacetate products from reactions with aromatic aldehydes undergo rhodium(II)-catalyzed ring closure to cyclobutanones with high diastereocontrol. Examples of complimentary Mannich-type addition reactions with imines are reported.  相似文献   

8.
BphI, a pyruvate-specific class II aldolase, catalyzes the reversible carbon-carbon bond formation of 4-hydroxy-2-oxoacids up to eight carbons in length. During the aldol addition catalyzed by BphI, the S-configured stereogenic center at C4 is created via attack of a pyruvate enolate intermediate on the si face of the aldehyde carbonyl of acetaldehyde to form 4(S)-hydroxy-2-oxopentanoate. Replacement of a Leu-87 residue within the active site of the enzyme with polar asparagine and bulky tryptophan led to enzymes with no detectable aldolase activity. These variants retained decarboxylase activity for the smaller oxaloacetate substrate, which is not inhibited by excess 4-hydroxy-2-oxopentanoate, confirming the results from molecular modeling that Leu-87 interacts with the C4-methyl of 4(S)-hydroxy-2-oxoacids. Double variants L87N;Y290F and L87W;Y290F were constructed to enable the binding of 4(R)-hydroxy-2-oxoacids by relieving the steric hindrance between the 5-methyl group of these compounds and the hydroxyl substituent on the phenyl ring of Tyr-290. The resultant enzymes were shown to exclusively utilize only 4(R)- and not 4(S)-hydroxy-2-oxopentanoate as the substrate. Polarimetric analysis confirmed that the double variants are able to synthesize 4-hydroxy-2-oxoacids up to eight carbons in length, which were the opposite stereoisomer compared to those produced by the wild-type enzyme. Overall the k(cat)/K(m) values for pyruvate and aldehydes in the aldol addition reactions were affected ≤10-fold in the double variants relative to the wild-type enzyme. Thus, stereocomplementary class II pyruvate aldolases are now available to create chiral 4-hydroxy-2-oxoacid skeletons as synthons for organic reactions.  相似文献   

9.
Catalytic asymmetric aldol reactions in aqueous media have been developed using chiral zinc complex. The aldol products have been obtained in high yields, high diastereocontrol, and good level of enantioselectivity. Various aromatic and alpha,beta-unsaturated aldehydes and silyl enol ethers derived from ketones can be employed in this reaction to provide the aldol adducts in good to high yield. The elaborated catalytic system has been found as selective for aliphatic aldehydes as well.  相似文献   

10.
Pyruvate decarboxylase (PDC) catalyzes the decarboxylation of pyruvate into acetaldehyde and CO(2) and requires the cofactors thiamin diphosphate and Mg(2+) for activity. Owing to its catalytic promiscuity and relaxed substrate specificity, PDC catalyzes carboligation side reactions and is exploited for the asymmetric synthesis of 2-hydroxy ketones such as (R)-phenylacetyl carbinol, the precursor of (-)-ephedrine. Although PDC variants with enhanced carboligation efficiency were generated in the past, the native reaction, i.e., formation of aldehydes, is heavily favored over carboligation side reactions in all these biocatalysts. We characterized an active site variant (Glu473Gln) in which partitioning between aldehyde release versus carboligation is inverted with an up to 100-fold preference for the latter pathway. Due to a defective protonation of the central carbanion/enamine intermediate, substrate turnover stalls at this catalytic stage and addition of external aldehydes leads to quantitative and enantioselective formation of 2-hydroxy ketones as shown for (R)-phenylacetyl carbinol, which is afforded with unmatched yields, rates, and purity. This protein variant thus constitutes an example for the rational design of biocatalysts with greatly enhanced accidental catalytic promiscuity by selective blockage of the native reaction and accumulation of reactive intermediates under steady-state turnover conditions.  相似文献   

11.
Chlorosulfonated styrene (10%) divinylbenzene resin beads reacted with an excess of ethylenediamine (EDA), diethylenetriamine (DETA), and triethylenetetramine (TETA) to give the corresponding sulfonamides with pendant oligo(ethyleneimines). The resulting modified resins are useful in the separation of aldehydes from hydrocarbon mixtures. Sorption of aldehydes occurs through formation of both Schiff base and five-membered (imidazoline) rings. Sorbed aldehydes can readily be stripped from the resins by treating with dilute acid solutions. Since the sulfamide bond has a reasonable stability toward acid-base hydrolysis, the loaded resins can be regenerated and recycled by simple acid-base washings, without losing their activity. In the present study, sorption and desorption kinetics of acetaldehyde, benzaldehyde, and salicylaldehyde have been investigated under different conditions. The aldehyde sorption obeys second-order kinetics. The method presented is applicable for all aromatic aldehydes. However, in the case of aliphatic aldehydes carrying an α-hydrogen, aldol condensation products form in solution. So aliphatic aldehydes and their aldol products are sorbed together by the resins. This limits the recovery of aliphatic aldehydes. Consequently, the resins described are cost effective sorbents for the removal and recovery of aromatic aldehydes from various mixtures. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2857–2864, 1997  相似文献   

12.
Meng Lei  Gong Li  Weihai Fang  Zemei Ge  Runtao Li 《Tetrahedron》2007,63(33):7892-7898
The l-proline-based dipeptide has been discovered and developed as an efficient catalyst for the direct asymmetric aldol reactions of unmodified ketones with various aldehydes including aromatic, aliphatic, heteroaromatic, and unsaturated aldehydes in the presence of water at 0 °C. The resulted methodology and optimal conditions led to the corresponding aldol products with high yields (up to 94%) and good enantioselectivities (up to 97% ee).  相似文献   

13.
Bidentate aluminum chelates derived from biphenol, binaphthol and catechol were found to be efficient catalysts for aldol-transfer reactions of ketone to ketone aldol adducts with aliphatic or aromatic aldehydes giving rise to the formation of aldol adducts of ketones to the aldehydes. In the presence of an excess of an aliphatic aldehyde, a catalytic tandem aldol-transfer—Tischtschenko reaction is observed. The tandem reaction produces monoesters of 1,3-diols with high anti selectivity and with modest to good chemical yield. 1,2-Unsaturated aldehydes are less reactive in the aldol-transfer reaction and require 2-4 times higher load of the catalyst to be used than aliphatic and aromatic aldehydes. Poor diastereoselectivity was observed in the formation of α-substituted aldols and 2-substituted monoesters of anti-1,3-diols indicating that the aldol-transfer reaction is not diastereoselective with the catalysts studied. The utility of the highly 1,3-anti selective formation of diolmonoesters was found to be limited by acyl migration.  相似文献   

14.
《Tetrahedron: Asymmetry》2007,18(2):237-242
Direct aldol reactions of aldehydes with methylthio- and fluoroacetone catalyzed by proline amides have been investigated. l-Prolinamide 5e was found to be the best catalyst. Under the optimized reaction conditions, a series of aromatic and aliphatic aldehydes reacted smoothly with methylthioacetone, to generate 1-methylthio-4-hydroxyketones 3 in good yields and with high regio- and enantioselectivities. Excellent enantioselectivities of up to 98% ee were observed for aromatic aldehydes and even higher enantioselectivities of >99% ee were observed for aliphatic aldehydes. Asymmetric direct aldol reactions of fluoroacetone with aldehydes in the presence of 20 mol % of 5e preferentially occurred at the fluoromethyl group, yielding products with high enantioselectivities (up to 98% ee).  相似文献   

15.
A minimalist active site redesign of the L ‐fuculose‐1‐phosphate aldolase from E. coli FucA was envisaged, to extend its tolerance towards bulky and conformationally restricted N‐Cbz‐amino aldehyde acceptor substrates (Cbz=benzyloxycarbonyl). Various mutants at the active site of the FucA wild type were obtained and screened with seven sterically demanding N‐Cbz‐amino aldehydes including N‐Cbz‐prolinal derivatives. FucA F131A showed an aldol activity of 62 μmol h?1 mg?1 with (R)‐N‐Cbz‐prolinal, whereas no detectable activity was observed with the FucA wild type. For the other substrates, the F131A mutant gave aldol activities from 4 to about 25 times higher than those observed with the FucA wild type. With regard to the stereochemistry of the reactions, the (R)‐amino aldehydes gave exclusively the anti configured aldol adducts whereas their S counterparts gave variable ratios of anti/syn diastereoisomers. Interestingly, the F131A mutant was highly stereoselective both with (R)‐ and with (S)‐N‐Cbz‐prolinal, exclusively producing the anti and syn aldol adducts, respectively. Molecular models suggest that this improved activity towards bulky and more rigid substrates, such as N‐Cbz‐prolinal, could arise from a better fit of the substrate into the hydrophobic pocket created by the F131A mutation, due to an additional π–cation interaction with the residue K205′ and to efficient contact between the substrate and the mechanistically important Y113′ and Y209′ residues. An expedient synthesis of novel polyhydroxylated pyrrolizidines related to the hyacinthacine and alexine types was accomplished through aldol additions of dihydroxyacetone phosphate (DHAP) to hydroxyprolinal derivatives with the hyperactive FucA F131A as catalyst. The iminocyclitols obtained were fully characterised and found to be moderate to weak inhibitors (relative to 1,4‐dideoxy‐1,4‐imino‐L ‐arabinitol (LAB) and 1,4‐dideoxy‐1,4‐imino‐D ‐arabinitol (DAB)) against glycosidases and rat intestinal saccharidases.  相似文献   

16.
The regio‐ and stereoselective formation of stereodefined polysubstituted silyl ketene aminals is easily achieved through selective combined carbometalation–oxidation–silylation reactions. These substrates are ideal candidates for Mukaiyama aldol reactions with aliphatic aldehydes as they give the aldol products with a quaternary carbon stereocenter α to the carbonyl groups in outstanding diastereoselectivities.  相似文献   

17.
The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.  相似文献   

18.
The Baylis-Hillman reaction of a sesquiterpene lactone parthenin with various aldehydes gave unexpected products containing a 1,3-dioxolane moiety. Both small aliphatic and aromatic aldehydes produced 1,3-dioxolanes, whereas higher aliphatic aldehydes produced normal Baylis-Hillman products.  相似文献   

19.
An enantioselective aldol reaction of N-propionylthiazolidinethione and representative aldehydes is disclosed. The reaction is catalyzed by [Ni(S,S)-t-BuBox](Otf)2. Enolization is effected by 2,6-lutidine, and TMSOTf facilitates catalyst turnover. Syn diastereoselectivities range from 88:12 to 97:3, and enantioselectivities are 90% or greater. Both aromatic and enolizable aliphatic aldehydes are included within the scope of this aldol addition process.  相似文献   

20.
Since the pioneering finding by List and Barbas III and their coworkers that L-proline could work as a catalyst in the intermolecular direct aldol reaction, the concept of small organic molecules as catalysts has received great attention. However, new organic molecule which have better catalysis ability are reported scarcely. Our groups1 found L-Prolinamides 1 to be active catalysts for the direct aldol reaction of 4-nitrobenaldehyde with neat acetone at room temperature. The enantioselecti…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号