首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, control over the bond length of a diatomic molecule with the use of parabolic chirped pulses was predicted on the basis of numerical calculations [Chang; et al. Phys. Rev. A 2010, 82, 063414]. To achieve the required bond elongation, a laser scheme was proposed that implies population inversion and vibrational trapping in a dissociative state. In this work we identify two regimes where the scheme works, called the strong and the weak adiabatic regimes. We define appropriate parameters to identify the thresholds where the different regimes operate. The strong adiabatic regime is characterized by a quasi-static process that requires longer pulses. The molecule is stabilized at a bond distance and at a time directly controlled by the pulse in a time-symmetrical way. In this work we analyze the degree of control over the period and elongation of the bond as a function of the pulse bandwidth. The weak adiabatic regime implies dynamic deformation of the bond, which allows for larger bond stretch and the use of shorter pulses. The dynamics is anharmonic and not time-symmetrical and the final state is a wave packet in the ground potential. We show how the vibrational energy of the wave packet can be controlled by changing the pulse duration.  相似文献   

2.
The dynamics of molecules under strong laser pulses is characterized by large Stark effects that modify and reshape the electronic potentials, known as laser-induced potentials (LIPs). If the time scale of the interaction is slow enough that the nuclear positions can adapt to these externally driven changes, the dynamics proceeds by adiabatic following, where the nuclei gain very little kinetic energy during the process. In this regime we show that the molecular dynamics can be simulated quite accurately by a semiclassical surface-hopping scheme formulated in the adiabatic representation. The nuclear motion is then influenced by the gradients of the laser-modified potentials, and nonadiabatic couplings are seen as transitions between the LIPs. As an example, we simulate the process of adiabatic passage by light induced potentials in Na(2) using the surface-hopping technique both in the diabatic representation based on molecular potentials and in the adiabatic representation based on LIPs, showing how the choice of the representation is crucial in reproducing the results obtained by exact quantum dynamical calculations.  相似文献   

3.
Based on wave packet interferences induced by a stationary laser field, a simple way of controlling nonadiabatic dissociation dynamics is proposed. We treat a simple two-state model of diatomic molecules. In this model, there exist two dissociative potential energy curves which cross and are strongly coupled at an internuclear distance, and thus dissociations into one channel are predominant. We propose a control scheme to selectively dissociate a molecule into any favorite channel by choosing the laser frequency and intensity appropriately. The semiclassical estimation of desirable laser parameters can be performed easily by regarding the dissociation processes as nonadiabatic transitions between the Floquet states. The agreement between the semiclassical estimation and the quantum wave packet calculation is found to be satisfactory in the high frequency region (> or =1000 cm(-1)) where the Floquet state picture is valid. In the low frequency region (<1000 cm(-1)), on the other hand, there are discrepancies between them due to the invalidity of the Floquet picture and the dissociation probability is sensitive to the laser phase. This control scheme is applied to the predissociation dynamics of NaI, NaI-->Na+I.  相似文献   

4.
Selective population transfer in electronic states of dissociative molecular systems is illustrated by adopting a control scheme based on Stark-chirped rapid adiabatic passage (SCRAP). In contrast to the discrete N-level system, dynamical Stark shift is induced in a more complex manner in the molecular electronic states. Wavepacket dynamics on the light-induced potentials, which are determined by the detuning of the pump pulse, can be controlled by additional Stark pulse in the SCRAP scheme. Complete population transfer can be achieved by either lowering the energy barrier along the adiabatic passage or placing the initial wavepacket on a well-defined dressed state suitable for the control. The determination of the pulse sequence is sufficient for controlling population transfer to the target state.  相似文献   

5.
We examine the propagation of shaped (amplitude- and frequency-modulated) ultrafast laser pulses through optically dense rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation all strongly depend on the laser pulse shape. For example, frequency swept pulses, which produce adiabatic passage in the optically thin limit (independent of the sign of the frequency sweep), behave unexpectedly in optically dense samples. Paraxial Maxwell optical Bloch equations can model our ultrafast pulse propagation results well and provide insight.  相似文献   

6.
7.
We have developed a single-chain theory that describes dynamics of associating polymer chains carrying multiple associative groups (or stickers) in the transient network formed by themselves and studied linear viscoelastic properties of this network. It is shown that if the average number N of stickers associated with the network junction per chain is large, the terminal relaxation time τ(A) that is proportional to τ(X)N(2) appears. The time τ(X) is the interval during which an associated sticker goes back to its equilibrium position by one or more dissociation steps. In this lower frequency regime ω<1/τ(X), the moduli are well described in terms of the Rouse model with the longest relaxation time τ(A). The large value of N is realized for chains carrying many stickers whose rate of association with the network junction is much larger than the dissociation rate. This associative Rouse behavior stems from the association/dissociation processes of stickers and is different from the ordinary Rouse behavior in the higher frequency regime, which is originated from the thermal segmental motion between stickers. If N is not large, the dynamic shear moduli are well described in terms of the Maxwell model characterized by a single relaxation time τ(X) in the moderate and lower frequency regimes. Thus, the transition occurs in the viscoelastic relaxation behavior from the Maxwell-type to the Rouse-type in ω<1/τ(X) as N increases. All these results are obtained under the affine deformation assumption for junction points. We also studied the effect of the junction fluctuations from the affine motion on the plateau modulus by introducing the virtual spring for bound stickers. It is shown that the plateau modulus is not affected by the junction fluctuations.  相似文献   

8.
We theoretically investigated the dynamics of structural deformations of CO(2) and its cations in near-infrared intense laser fields (approximately 10(15) W cm(-2)) by using the time-dependent adiabatic state approach. To obtain "field-following" adiabatic potentials for nuclear dynamics, the electronic Hamiltonian including the interaction with the instantaneous laser electric field is diagonalized by the multiconfiguration self-consistent-field molecular orbital method. In the CO(2) and CO(2+) stages, ionization occurs before the field intensity becomes high enough to deform the molecule. In the CO(2)(2+) stage, simultaneous symmetric two-bond stretching occurs as well as one-bond stretching. Two-bond stretching is induced by an intense field in the lowest time-dependent adiabatic state |1> of CO(2)(2+), and this two-bond stretching is followed by the occurrence of a large-amplitude bending motion mainly in the second-lowest adiabatic state |2> nonadiabatically created at large internuclear distances by the field from |1>. It is concluded that the experimentally observed stretched and bent structure of CO(2)(3+) just before Coulomb explosions originates from the structural deformation of CO(2)(2+). We also show in this report that the concept of "optical-cycle-averaged potential" is useful for designing schemes to control molecular (reaction) dynamics, such as dissociation dynamics of CO(2), in intense fields. The present approach is simple but has wide applicability for analysis and prediction of electronic and nuclear dynamics of polyatomic molecules in intense laser fields.  相似文献   

9.
We study the drift of a Brownian particle in a periodically tapered tube, induced by a longitudinal time-periodic force of amplitude ∣F∣ that alternates in sign every half-period. The focus is on the velocity dependence on the force period, which is usually considered not tractable analytically. For large ∣F∣ we derive an analytical solution that gives the velocity as a function of the amplitude and the period of the force as well as the geometric parameters of the tube. The solution shows how the velocity decreases from its maximum value to zero as the force period decreases from infinity (adiabatic regime) to zero. Our analytical results are in excellent agreement with those obtained from 3D Brownian dynamics simulations.  相似文献   

10.
We study different schemes that allow laser controlled adiabatic manipulation of the bond in diatomic molecules by using sequences of nonresonant time-delayed chirped pulses. The schemes rely on adiabatic passage of the vibrational wave packet by laser-induced potential shaping from the ground electronic state to a laser-stabilized dissociative electronic state by two-photon absorption. The degree of control that is possible over the position (bond length) and width (bond spread) of the vibrational wave packet is compared for the different schemes. The dynamics is analyzed detailing the role of the different control knobs and the conditions that allow or break the adiabatic passage.  相似文献   

11.
The hindered rotational states of molecules confined in crystal fields of octahedral symmetry, and their time-dependent alignment obtained by pulsed nonresonant laser fields, are studied computationally. The control over the molecular axis direction is discussed based on the evolution of the rotational wave packet generated in the cubic crystal-field potential. The alignment degree obtained in a cooperative case, where the alignment field is applied in a favorable crystal-field direction, or in a competitive direction, where the crystal field has a saddle point, is presented. The investigation is divided into two time regimes where the pulse duration is either ultrashort, leading to nonadiabatic dynamics, or long with respect to period of molecular libration, which leads to synchronous alignment due to nearly adiabatic following. The results are contrasted to existing gas phase studies. In particular, the irregularity of the crystal-field energies leads to persistent interference patterns in the alignment signals. The use of nonadiabatic alignment for interrogation of crystal-field energetics and the use of adiabatic alignment for directional control of molecular dynamics in solids are proposed as practical applications.  相似文献   

12.
The relative yield of the C-O bond breaking with respect to the C-C bond breaking in ethanol cation C2H5OH+ is maximized in intense laser fields (10(13)-10(15) Wcm2) by open-loop and closed-loop optimization procedures. In the open-loop optimization, a train of intense laser pulses are synthesized so that the temporal separation between the first and last pulses becomes 800 fs, and the number and width of the pulses within a train are systematically varied. When the duration of 800 fs is filled with laser fields by increasing the number of pulses or by stretching all pulses in a triple pulse train, the relative yield of the C-O bond breaking becomes significantly large. In the closed-loop optimization using a self-learning algorithm, the four dispersion coefficients or the phases of 128 frequency components of an intense laser pulse are adopted as optimized parameters. From these optimization experiments it is revealed that the yield ratio of the C-O bond breaking is maximized as far as the total duration of the intense laser field reaches as long as approximately 1 ps and that the intermittent disappearance of the laser field within a pulse does not affect the relative yields of the bond breaking pathways.  相似文献   

13.
A model of nonequilibrium charge recombination from an excited adiabatic state of a donor-acceptor complex induced by the nonadiabatic interaction operator is considered. The decay of the excited state population prepared by a short laser pulse is shown to be highly nonexponential. The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited donor-acceptor complexes is explored. The charge recombination rate constant is found to decrease with increasing excitation frequency. The variation of the excitation pulse carrier frequency within the charge transfer absorption band of the complex can alter the effective charge recombination rate by up to a factor 2. The magnitude of this spectral effect decreases strongly with increasing electronic coupling.  相似文献   

14.
Electron scattering expressions are presented which are applicable to very general conditions of implementation of anisotropic ultrafast electron diffraction (UED) experiments on the femto- and picosecond time scale. "Magic angle" methods for extracting from the experimental diffraction patterns both the isotropic scalar contribution (population dynamics) and the angular (orientation-dependent) contribution are described. To achieve this result, the molecular scattering intensity is given as an expansion in terms of the moments of the transition-dipole distribution created by the linearly polarized excitation laser pulse. The isotropic component (n=0 moment) depends only on population and scalar internuclear separations, and the higher moments reflect bond angles and evolve in time due to rotational motion of the molecules. This clear analytical separation facilitates assessment of the role of experimental variables in determining the influence of anisotropic orientational distributions of the molecular ensembles on the measured diffraction patterns. Practical procedures to separate the isotropic and anisotropic components of experimental data are evaluated and demonstrated with application to reactions. The influence of vectorial properties (bond angles and rotational dynamics) on the anisotropic component adds a new dimension to UED, arising through the imposition of spatial order on otherwise randomly oriented ensembles.  相似文献   

15.
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.  相似文献   

16.
We propose and test numerically a scheme for controlling the bond distance in a diatomic molecule that requires the use of a single chirped pulse. The laser prepares a superposition state of both nuclear and electronic degrees of freedom, where the main character of the electronic wave function is that of an excited dissociative state. The main limitation of the scheme is the need of ultra broadband pulses, where the bandwidth must be of the order of the dissociation energy to achieve large bond elongations. The scheme can be used to deform the bond during the laser excitation to an arbitrary large and constant value, or to allow slow time-dependent bond elongations. Additionally, the scheme can be used to prepare highly excited vibrational wave packets in the ground potential after the pulse is switched off, at the expense of losing some population that dissociates. These wave packets are initially localized at the outer well of the potential, at energies controllable by the excitation process.  相似文献   

17.
18.
Time-dependent density functional theory (TDDFT) has evolved into a general routine to extract the energies of low-lying excited states over the last decades. Driven by the remarkable progress of laser technology, the study of the interaction between matter and intense laser fields with ultrashort pulse duration develops rapidly. A great number of new strong field phenomena emerge. The requirement of a theoretical tool to study the intense field phenomena and dynamical processes of polyatomic systems is urgent. To extend the power of the TDDFT beyond the linear responses, an alternative scheme has been developed by numerically solving the time-dependent Kohn-Sham equations directly in real-time domain. In this article, we summarize the algorithms and capabilities of the real-time TDDFTon studying electron spectroscopy and dynamics of polyatomic systems. The failure of TDDFT with the adiabatic localdensity approximation on some dynamical processes and the possible solutions are synopsized as well. The numerical implementation of algorithms and applications of RT-TDDFT on the linear and nonlinear spectroscopies and electronic dynamics of nano-size nonmetal clusters are displayed.  相似文献   

19.
The phase behavior of amphiphiles, e.g., lipids and surfactants, at low water content is of great interest for many technical and pharmaceutical applications. When put in contact with air having a moderate relative humidity, amphiphiles often exhibit coexistence between solid and liquid crystalline phases, making their complete characterization difficult. This study describes a (13)C solid-state NMR technique for the investigation of amphiphile phase behavior in the water-poor regime. While the (13)C chemical shift is an indicator of molecular conformation, the (13)C signal intensities obtained with the CP and INEPT polarization transfer schemes yield information on molecular dynamics. A theoretical analysis incorporating the effect of molecular segment reorientation, with the correlation time τ(c) and order parameter S, shows that INEPT is most efficient for mobile segments with τ(c) < 0.01 μs and S < 0.05, while CP yields maximal signal for rigid segments with τ(c) > 10 μs and/or S > 0.5 under typical solid-state NMR experimental conditions. For liquid crystalline phases, where τ(c) < 0.01 μs and 0 < S < 0.3, the observed CP and INEPT intensities serve as a gauge of S. The combination of information on molecular conformation and dynamics permits facile phase diagram determination for systems with solid crystalline, solid amorphous, anisotropic liquid crystalline, and isotropic liquid (crystalline) phases as demonstrated by experiments on a series of reference systems with known phase structure. Three solid phases (anhydrous crystal, dihydrate, gel), two anisotropic liquid crystalline phases (normal hexagonal, lamellar), and two isotropic liquid crystalline phases (micellar cubic, bicontinuous cubic) are identified in the temperature-composition phase diagram of the cetyltrimethylammonium succinate/water system. Replacing the succinate counterion with DNA prevents the formation of phases other than hexagonal and leads to a general increase of τ(c).  相似文献   

20.
New features of molecular wires can be observed when they are irradiated by laser fields. These effects can be achieved by periodically oscillating fields but also by short laser pulses. The theoretical foundation used for these investigations is a density-matrix formalism where the full system is partitioned into a relevant part and a thermal fermionic bath. The derivation of a quantum master equation, either based on a time-convolutionless or time-convolution projection-operator approach, incorporates the interaction with time-dependent laser fields nonperturbatively and is valid at low temperatures for weak system-bath coupling. From the population dynamics the electrical current through the molecular wire is determined. This theory including further extensions is used for the determination of electron transport through molecular wires. As examples, we show computations of coherent destruction of tunneling in asymmetric periodically driven quantum systems, alternating currents and the suppression of the directed current by using a short laser pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号