首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We present the analyses of radiation force and torque on a spherical particle illuminated by Laguerre-Gaussian beam. Since Laguerre-Gaussian beam has angular momentum, the particle can be rotated by illumination of Laguerre-Gaussian beam. Radiation forces and torques for a silver sphere and a silicon sphere near the silver substrate are analyzed. We found that the maximum torque on silicon sphere is about five times higher than the maximum torque on silver sphere and fine control of the focused spot is required to push the particle to the substrate.  相似文献   

2.
The transient advection of a cylindrical vortex tube in a viscous incompressible flow field and its interaction with a rotating/spinning spherical particle has been investigated numerically at Reynolds numbers in the range of 20≤ Re≤200 for angular velocities of 0≤Ω≤0.5. The effects of vortex parameters such as size, circulation strength and initial position relative to the particle, on the temporal behavior of the lift and drag forces are studied. Vortex‐sphere interactions bring about major changes in the flow field particularly when coupled with particle rotation. It is observed that the forces acting on the particle are significantly influenced during the time that the vortex core is in the vicinity of the particle. The extent of these local changes are about ±30% in the drag coefficient and about ±200% in the lift coefficient as compared to flow over a rotating solid sphere with no vortex interaction. It is also found that a vortex with core radius between one and two particle diameters creates the strongest temporal variations in the lift and drag coefficients. Furthermore, maximum lift variations occur for the vortex‐particle head on collision, while a vortex with an offset distance of about one diameter from the principal flow axis generates the maximum drag variations.  相似文献   

3.
An attempt is made to remove singularities arising in general relativity by modifying it so as to take into account the existence of a fundamental rest frame in the universe. This is done by introducing a background metric γμν (in addition to gμν) describing a spacetime of constant curvature with positive spatial curvature. The additional terms in the field equations are negligible for the solar system but important for intense fields. Cosmological models are obtained without singular states but simulating the “big bang.” The field of a particle differs from the Schwarzschild field only very close to, and inside, the Schwarzschild sphere. The interior of this sphere is unphysical and impenetrable. A star undergoing gravitational collapse reaches a state in which it fills the Schwarzschild sphere with uniform density (and pressure) and has the geometry of a closed Einstein universe. Any charge present is on the surface of the sphere. Elementary particles may have similar structures.  相似文献   

4.
Scattering of a high-order Hermite-Gaussian beam by a multi-layered sphere is analyzed. The incident high- order Hermite-Gaussian beam field is expressed by the complex-source-point method and expanded in terms of spherical vector wave functions. The beam shape coefficients of the Hermite-Gaussian beam are obtained. Under electromagnetic field boundary conditions, coefficients in the expressions of scattering fields are derived. Results of the numerical calculation of scattering intensity are presented. The effects of the particle parameters and beam parameters on scattering intensity are discussed in detail.  相似文献   

5.
6.
Using extensive Monte Carlo simulations with both particle and cluster orientational moves, in conjunction with finite size scaling and histogram reweighting techniques, we have determined the Curie temperature for two models of positionally frozen Heisenberg spin systems: a system with spatial correlations corresponding to a hard sphere fluid and a spatially random system. We find that the results for the positionally frozen hard sphere Heisenberg system are fairly similar to those previously obtained for the Heisenberg spin fluid and quantitatively agree with the mean field theory estimates. The random system undergoes the ferromagnetic transition at a higher temperature since the lack of core repulsion increases the spin correlations. In this case however the mean field theory overestimates by far the critical temperature.  相似文献   

7.
An axisymmetric field problem of a sphere and a multi-layered planer dielectric body is investigated based on the multipolar expansion method. First, the multipolar potential, produced by the sphere and expressed in the spherical coordinate system, is re-written in the cylindrical coordinate system as an integral of Bessel function. Then the field problem is solved with the boundary conditions at the planer interface of the dielectrics, and the obtained potential is written back to spherical harmonics, which can be regarded as “image multipoles” inside the dielectric body. The “images” influences back the “multipoles” on the sphere, and the field can be determined by solving these relations in self-consistent manner. DEP force exerted on the particle is calculated as the multipolar interaction, as well as the capacitance for the case involving a conducting sphere and a conducting plane.  相似文献   

8.
R. Schmitz 《Physica A》1980,102(1):161-178
We present a general theorem for the force multipole moments of arbitrary order induced in a spherically symmetric particle immersed in a fluid whose motion satisfies the linear Navier-Stokes equation for steady incompressible viscous flow. The multipole moments are expressed in terms of the unperturbed fluid velocity field. It is shown that for a particle with a finite extension only a few terms give rise to fluid perturbations which are not confined to the interior of the particle. We give explicit results for a polymer satisfying the Debye-Bueche-Brinkman equations and for a hard sphere with mixed slip-stick boundary conditions.  相似文献   

9.
常建忠  刘汉涛  刘谋斌  苏铁熊 《物理学报》2012,61(6):64704-064704
采用耗散粒子动力学(dissipative particle dynamics, DPD)方法, 对两平行平板间流体绕流三维球体进行了计算. 球体和平行平板由达到平衡状态的冻结DPD粒子组成, 流体在不同无量纲外力驱动下流动, 球体受力由组成球体的所有冻结DPD粒子求和得到. 流动达到充分发展后, 输出球体在流动方向的受力, 并计算球体的阻力系数, 与文献中的关联式进行了对比. 结果表明, 在Re≤qslant 100的范围内, DPD方法能较准确地计算出阻力系数, 在较大雷诺数时, 由于流体的压缩性导致计算结果出现差异.  相似文献   

10.
采用耗散粒子动力学(dissipative particle dynamics, DPD)方法, 对两平行平板间流体绕流三维球体进行了计算. 球体和平行平板由达到平衡状态的冻结DPD粒子组成, 流体在不同无量纲外力驱动下流动, 球体受力由组成球体的所有冻结DPD粒子求和得到. 流动达到充分发展后, 输出球体在流动方向的受力, 并计算球体的阻力系数, 与文献中的关联式进行了对比. 结果表明, 在Re≤qslant 100的范围内, DPD方法能较准确地计算出阻力系数, 在较大雷诺数时, 由于流  相似文献   

11.
Multipolar plasmon optical excitations at spherical gold nanoparticles and their manifestations in the particle images formatted in the particle surface proximity are studied. The multipolar plasmon size characteristic: plasmon resonance frequencies and plasmon damping rates were obtained within rigorous size dependent modelling. The realistic, frequency dependent dielectric function of a metal was used. The distribution of light intensity and of electric field radial component at the flat square scanning plane scattered by a gold sphere of radius 95 nm was acquired. The images resulted from the spatial distribution of the full mean Poynting vector including near-field radial components of the scattered electromagnetic field. Monochromatic images at frequencies close to and equal to the plasmon dipole and quadrupole resonance frequencies are discussed. The changes in images and radial components of the scattered electromagnetic field distribution at the scanning plane moved away from the particle surface from near-field to far-field region are discussed.  相似文献   

12.
We present the N=2 supersymmetric formulation for the classical and quantum dynamics of a nonrelativistic charged particle on a curved surface in the presence of a perpendicular magnetic field. For a particle moving on a constant-curvature surface in a constant magnetic field, our Hamiltonian possesses the shape-invariance property in addition. On the surface of a sphere and also on the hyperbolic plane, we exploit the supersymmetry and shape-invariance properties to obtain complete solutions to the corresponding quantum mechanical problems.  相似文献   

13.
We have investigated the dipole interaction energies per particle and the local dipole field distributions in a frozen-magnetization model of a ferrofluid chain in a saturating magnetic field. A lognormal distribution of particle diameters was assumed. The interaction energies were calculated for one-dimensional arrays of dipoles with moments parallel to the chain. We have computed the energies by various approximations related to the hard sphere particle diameter distribution. A similar approach was followed for the local field distributions. It was found that the energy per particle and mean local field were largely determined by the mean particle diameter, but the distribution of local fields was sensitive to both the mean diameter and the assumptions about spatial correlations between particles of different size. Detailed results are presented for water-soluble Fe3O4/PAA (polyacrylic acid).  相似文献   

14.
The potential energy and the interaction force of a conducting spherical particle and a similarly charged plane plate are calculated for relatively small distances. The force is calculated from the potential energy and the plate is represented as a conducting sphere whose radius is 100 times greater than the radius of the particle. It is assumed that the particle is not charged by the plate. The domains of parameters in which the particle is always repulsed from the plate and in which the attraction takes place are determined.  相似文献   

15.
In this note we study the Landau–Hall problem in the 2D and 3D unit sphere, that is, the motion of a charged particle in the presence of a static magnetic field. The magnetic flow is completely determined for any Riemannian surface of constant Gauss curvature, in particular, the unit 2D sphere. For the 3D case we consider Killing magnetic fields on the unit sphere, and we show that the magnetic flowlines are helices with the given Killing vector field as its axis.  相似文献   

16.
《Nuclear Physics B》2002,627(3):565-579
The energy spectrum of a nonrelativistic particle on a noncommutative sphere in the presence of a magnetic monopole field is calculated. The system is treated in the field theory language, in which the one-particle sector of a charged Schrödinger field coupled to a noncommutative U(1) gauge field is identified. It is shown that the Hamiltonian is essentially the angular momentum squared of the particle, but with a nontrivial scaling factor appearing, in agreement with the first-quantized canonical treatment of the problem. Monopole quantization is recovered and identified as the quantization of a commutative Seiberg–Witten mapped monopole field.  相似文献   

17.
对同振球型矢量水听器声压和质点振速的声波接收理论进行了研究。以同振球型振速水听器测量原理为基础,推导了自由运动刚性球体和弹性球体的声波接收响应数学表达式,分析了振速水听器几何尺寸、平均密度与其频响特性曲线之间的关系;另外,根据球面接收器的声波接收理论,推导了矢量水听器声压接收响应数学表达式,通过理论分析和数值计算,研究了振速水听器表面上的声压分布规律以及声压水听器的声波接收压力系数与其接收面的大小、质点振速水听器的半径、布放的位置和半径等参数之间的关系;从理论上建立了矢量水听器声波接收理论模型和分析方法,为矢量水听器的设计和研制提供了理论依据。   相似文献   

18.
The potentials of the magnetic field of a low-frequency magnetic dipole reflected by a sphere are analyzed. It is shown that for short ranges between the dipole and the sphere this field can be described by one potential, where the field is equivalent to the field of a system of dipoles and charges.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 73–77, March, 1976.  相似文献   

19.
This paper deals with the case when a homogeneous spherical particle (called the inclusion) is embedded at an arbitrary location inside a sphere (called the main or host sphere). Similarly as for previous Generalized Lorenz‐Mie Theories, many applications are expected from this theory, in particular in the field of optical particle characterization. Another interesting prospect concerns the behavior of morphology‐dependent resonances (MDRs). From an electromagnetic point of view, these MDRs correspond to solutions of characteristic equations associated with boundary conditions and lead to internal fields which are concentrated near the rim of the scatterer. It is also shown that this geometrical optics approximation (expressed in terms of rays) is equivalent to a mechanical problem (expressed in terms of trajectories). This mechanical problem leads to chaotic behavior corresponding to optical chaos phenomena in the optical language. We therefore exhibit a class of particles (i) for which the electromagnetic problem is exactly solvable in the framework of a GLMT and (ii) which exhibits chaotic signatures. It is expected that these chaotic signatures would be revealed in salient features of the scattering diagrams, opening the way to refined optical particle characterization in the presence of inhomogeneities.  相似文献   

20.
This paper calculates light scattering by a spherical water particle containing densely packed inclusions at a visible wavelength 0.55 \mum by a combination of ray-tracing and Monte Carlo techniques. While the individual reflection and refraction events at the outer boundary of a sphere particle are considered by a ray-tracing program, the Monte Carlo routine simulates internal scattering processes. The main advantage of this method is that the shape of the particle can be arbitrary, and multiple scattering can be considered in the internal scattering processes. A dense-medium light-scattering theory based on the introduction of the static structure factor is used to calculate the phase function and asymmetry parameters for densely packed inclusions. Numerical results of the single scattering characteristics for a sphere containing multiple densely packed inclusions are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号