首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of electrospray ionization (ESI), multistage, and high-resolution mass spectrometry experiments are used to examine the gas-phase fragmentation reactions of radical cations of cysteine containing di- and tripeptides. Two different chemical methods were used to form initial populations of radical cations in which the radical sites were located at different positions: (1) sulfur-centered cysteinyl radicals via bond homolysis of protonated S-nitrosocysteine containing peptides; and (2) α-carbon backbone-centered radicals via Siu’s sequence of reactions (J. Am. Chem. Soc. 2008, 130, 7862). Comparison of the fragmentation reactions of these regiospecifically generated radicals suggests that hydrogen atom transfer (HAT) between the α C-H of adjacent residues and the cysteinyl radical can occur. In addition, using accurate mass measurements, deuterium labeling, and comparison with an authentic sample, a novel loss of part of the N-terminal cysteine residue was shown to give rise to the protonated, truncated N-formyl peptide (an even-electron xn ion). DFT calculations were performed on the radical cation [GCG].+ to examine: the relative stabilities of isomers with different radical and protonation sites; the barriers associated with radical migration between four possible radical sites, [G.CG]+, [GC.G]+, [GCG.]+, and [GC(S.)G]+; and for dissociation from these sites to yield b2-type ions.  相似文献   

2.
Distonic radical cations (DRCs) with spatially separated charge and radical sites have, so far, largely been observed by gas-phase mass spectrometry and/or matrix isolation spectroscopy work. Herein, we disclose the isolation of a crystalline dicarbondiphosphide-based β-distonic radical cation salt 3.+ (BARF) (BARF=[B(3,5-(CF3)2C6H3)4)]) stable at room temperature and formed by a one-electron-oxidation-induced intramolecular skeletal rearrangement reaction. Such a species has been validated by electron paramagnetic resonance (EPR) spectroscopy, single-crystal X-ray diffraction, UV/Vis spectroscopy and density functional theory (DFT) calculations. Compound 3.+ (BARF) exhibits a large majority of spin density at a two-coordinate phosphorus atom (0.74 a.u.) and a cationic charge located predominantly at the four-coordinate phosphorus atom (1.53 a.u.), which are separated by one carbon atom. This species represents an isolable entity of a phosphorus radical cation that is the closest to a genuine phosphorus DRC to date.  相似文献   

3.
In this work, we describe two different methods for generating protonated S-nitrosocysteine in the gas phase. The first method involves a gas-phase reaction of protonated cysteine with t-butylnitrite, while the second method uses a solution-based transnitrosylation reaction of cysteine with S-nitrosoglutathione followed by transfer of the resulting S-nitrosocysteine into the gas phase by electrospray ionization mass spectrometry (ESI-MS). Independent of the way it was formed, protonated S-nitrosocysteine readily fragments via bond homolysis to form a long-lived radical cation of cysteine (Cys•+), which fragments under collision-induced dissociation (CID) conditions via losses in the following relative abundance order: •COOH ≫ CH2S > •CH2SH-H2S. Deuterium labeling experiments were performed to study the mechanisms leading to these pathways. DFT calculations were also used to probe aspects of the fragmentation of protonated S-nitrosocysteine and the radical cation of cysteine. NO loss is found to be the lowest energy channel for the former ion, while the initially formed distonic Cys•+ with a sulfur radical site undergoes proton and/or H atom transfer reactions that precede the losses of CH2S, •COOH, •CH2SH, and H2S.  相似文献   

4.
Although dimer radical ions of aromatic molecules in the liquid-solution phase have been intensely studied, the understanding of charge-localized dimers, in which the extra charge is localized in a single monomer unit instead of being shared between two monomer units, is still elusive. In this study, the formation of a charge-localized dimer radical cation of 2-ethyl-9,10-dimethoxyanthracene (DMA), (DMA)2.+ is investigated by transient absorption (TA) and time-resolved resonance Raman (TR3) spectroscopic methods combined with a pulse radiolysis technique. Visible- and near-IR TA signals in highly concentrated DMA solutions supported the formation of non-covalent (DMA)2.+ by association of DMA and DMA.+. TR3 spectra obtained from 30 ns to 300 μs time delays showed that the major bands are quite similar to those of DMA except for small transient bands, even at 30 ns time delay, suggesting that the positive charge of non-covalent (DMA)2.+ is localized in a single monomer unit. From DFT calculations for (DMA)2.+, our TR3 spectra showed the best agreement with the calculated Raman spectrum of charge-localized edge-to-face T-shaped (DMA)2.+, termed DT.+, although the charge-delocalized asymmetric π-stacked face-to-face (DMA)2.+, termed DF3.+, is the most stable structure of (DMA)2.+ according to the energetics from DFT calculations. The calculated potential energy curves for the association between DMA.+ and DMA showed that DT.+ is likely to be efficiently formed and contribute significantly to the TR3 spectra as a result of the permanent charge-induced Coulombic interactions and a dynamic equilibrium between charge localized and delocalized structures.  相似文献   

5.
The radical cations of Cys-Gly and Gly-Cys were studied using ion-molecule reactions (IMR), infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. Homolytic cleavage of the S–NO bond of nitrosylated precursors generated radical cations with the radical site initially located on the sulfur atom. Time-resolved ion-molecule reactions showed that radical site migration via hydrogen atom transfer (HAT) occurred much more quickly in Gly-Cys•+ than in Cys-Gly•+. IRMPD and DFT calculations indicated that for Gly-Cys, the radical migrated from the sulfur atom to the α-carbon of glycine, which is lower in energy than the sulfur radical (–53.5 kJ/mol). This migration does not occur for Cys-Gly because the glycine α-carbon is higher in energy than the sulfur radical (10.3 kJ/mol). DFT calculations showed that the highest energy barriers for rearrangement are 68.2 kJ/mol for Gly-Cys and 133.8 kJ/mol for Cys-Gly, which is in agreement with both the IMR and IRMPD data and explains the HAT in Gly-Cys.  相似文献   

6.
The reactivities of the adamantane‐like heteronuclear vanadium‐phosphorus oxygen cluster ions [VxP4?xO10].+ (x=0, 2–4) towards hydrocarbons strongly depend on the V/P ratio of the clusters. Possible mechanisms for the gas‐phase reactions of these heteronuclear cations with ethene and ethane have been elucidated by means of DFT‐based calculations; homolytic C? H bond activation constitutes the initial step, and for all systems the P? O. unit of the clusters serves as the reactive site. More complex oxidation processes, such as oxygen‐atom transfer to, or oxidative dehydrogenation of the hydrocarbons require the presence of a vanadium atom to provide the electronic prerequisites which are necessary to bring about the 2e? reduction of the cationic clusters.  相似文献   

7.
8.
The reaction of the aromatic distonic peroxyl radical cations N‐methyl pyridinium‐4‐peroxyl (PyrOO.+) and 4‐(N,N,N‐trimethyl ammonium)‐phenyl peroxyl (AnOO.+), with symmetrical dialkyl alkynes 10a – c was studied in the gas phase by mass spectrometry. PyrOO.+ and AnOO.+ were produced through reaction of the respective distonic aryl radical cations Pyr.+ and An.+ with oxygen, O2. For the reaction of Pyr.+ with O2 an absolute rate coefficient of k1=7.1×10?12 cm3 molecule?1 s?1 and a collision efficiency of 1.2 % was determined at 298 K. The strongly electrophilic PyrOO.+ reacts with 3‐hexyne and 4‐octyne with absolute rate coefficients of khexyne=1.5×10?10 cm3 molecule?1 s?1 and koctyne=2.8×10?10 cm3 molecule?1 s?1, respectively, at 298 K. The reaction of both PyrOO.+ and AnOO.+ proceeds by radical addition to the alkyne, whereas propargylic hydrogen abstraction was observed as a very minor pathway only in the reactions involving PyrOO.+. A major reaction pathway of the vinyl radicals 11 formed upon PyrOO.+ addition to the alkynes involves γ‐fragmentation of the peroxy O? O bond and formation of PyrO.+. The PyrO.+ is rapidly trapped by intermolecular hydrogen abstraction, presumably from a propargylic methylene group in the alkyne. The reaction of the less electrophilic AnOO.+ with alkynes is considerably slower and resulted in formation of AnO.+ as the only charged product. These findings suggest that electrophilic aromatic peroxyl radicals act as oxygen atom donors, which can be used to generate α‐oxo carbenes 13 (or isomeric species) from alkynes in a single step. Besides γ‐fragmentation, a number of competing unimolecular dissociative reactions also occur in vinyl radicals 11 . The potential energy diagrams of these reactions were explored with density functional theory and ab initio methods, which enabled identification of the chemical structures of the most important products.  相似文献   

9.
The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S–NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol–1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011 , 17, 873–879) and the study by Sinha et al. for cysteine radical cation (Phys. Chem. Chem. Phys. 2010 , 12, 9794–9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M – 2H) •– . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol–1) position, and does not rearrange.  相似文献   

10.
The thermal gas‐phase reactions of [Al2ZnO4].+ with methane have been explored by using FT‐ICR mass spectrometry complemented by high‐level quantum chemical calculations. Two competitive mechanisms, that is, hydrogen‐atom transfer (HAT) and proton‐coupled electron transfer (PCET) are operative. Interestingly, while the HAT process is influenced by the polarity of the transition structure, both the ionic nature of the metal–oxygen bond and the structural rigidity of the cluster oxide affect the PCET pathway. As compared to the previously reported homonuclear [Al2O3].+ and [ZnO].+, the heteronuclear oxide [Al2ZnO4].+ exhibits a much higher chemoselectivity towards methane. The electronic origins of the doping effect have been explored.  相似文献   

11.
Studies by the method of cyclic potential scanning from 0.2 to 1.9 V provided electroanalytical evidence that the reaction of allyl dithiobenzoate with tetracyanoethylene (TCNE) in MeCN proceeds as the reaction of the TCNE.− radical anion with the PhSSAll.+ radical cation to form phenyl-substituted 2,2,3,3-tetracyano-7,8-dithiabicyclo[3.2.1]octane. When current is not applied, the reaction does not proceed at 20°C for 3 days. However, this reaction in boiling MeCN occurs without electrochemical activation and, apparently, involves intermediate formation of the above radical ions. It was established by semiempirical PM3 calculations that allyl dithiobenzoate and TCNE form a stable charge-transfer complex that precedes chemical electron transfer. Dedicated to the memory of Professor Viktor Nikolaevich Drozd. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 78–81, January, 1999.  相似文献   

12.
The title Schiff-base compound, 6-[(5-Bromopyridin-2-yl)iminomethyl]phenol (1), has been synthesized and characterized by elemental analyses, FT-IR, UV–Vis and 1H-NMR spectroscopy, and X-ray single crystal diffraction. In the gas phase four isomers were found for title compound. Density functional (DFT) calculations have been carried out and it was found that the A isomer is the most stable one. The protonated imine N atom is involved in intra- and inter-molecular hydrogen bonds with the phenoxide group and H aromatic atoms, respectively. The title compound displays a trans configuration about the C=N double bond.  相似文献   

13.
It follows from DFT calculations of acetylenic thiolates and their structural isomers—thioketenes and thiirenes that only the acetylenic type is stable. Most of the negative charge is concentrated on the sulfur atom. The influence of the cation (Li, Na, K) and the acetylenic substituent on the electronic structure and geometry of the thiolates is investigated. DFT calculations of IR and 13C NMR spectra of phenylethynethiolate potassium are in agreement with experimental data.  相似文献   

14.
In thermal reactions of methane with diatomic metal oxides [MO].+ of the zinc triad (M=Zn, Cd, Hg), protonated formaldehyde [CH2OH]+ is generated as the major product only for the [HgO].+/CH4 couple. Mechanistic insight is provided by high‐level quantum‐chemical calculations, and relativistic effects are suggested to be the root cause for the unexpected thermal production of [CH2OH]+ from [HgO].+/CH4.  相似文献   

15.
The oxidation of elemental sulfur in superacidic solutions and melts is one of the oldest topics in inorganic main group chemistry. Thus far, only three homopolyatomic sulfur cations ([S4]2+, [S8]2+, and [S19]2+) have been characterized crystallographically although ESR investigations have given evidence for the presence of at least two additional homopolyatomic sulfur radical cations in solution. Herein, the crystal structure of the hitherto unknown homopolyatomic sulfur radical cation [S8].+ is presented. The radical cation [S8].+ represents the first step of the oxidation of the S8 molecule present in elemental sulfur. It has a structure similar to the known structure of [S8]2+, but the transannular sulfur⋅⋅⋅sulfur contact is significantly elongated. Quantum-chemical calculations help in understanding its structure and support its presence in solution as a stable compound. The existence of [S8].+ is also in accord with previous ESR investigations.  相似文献   

16.
2-(2-Hydroxyphenyl)-p-carborane forms an intramolecular hydrogen bonding based on the results of X-ray, IR, and 1H NMR studies. The hydrogen bonding is released by the addition of acid in solution. Density functional theory (DFT) calculations on the phenol, phenolate and protonated phenol structures indicated two stable conformational state, hydrogen bonding form for phenol and phenolate, and dihydrogen bonding form for protonated phenol.  相似文献   

17.
We show that the radical cations of adamantane (C10H16.+, 1 H.+) and perdeuteroadamantane (C10D16.+, 1 D.+) are stable species in the gas phase. The radical cation of adamantylideneadamantane (C20H28.+, 2 H.+) is also stable (as in solution). By using the natural 13C abundances of the ions, we determine the rate constants for the reversible isergonic single‐electron transfer (SET) processes involving the dyads 1 H.+/ 1 H, 1 D.+/ 1 D and 2 H.+/ 2 H. Rate constants for the reaction 1 H.++ 1 D? 1 H+ 1 D.+ are also determined and Marcus’ cross‐term equation is shown to hold in this case. The rate constants for the isergonic processes are extremely high, practically collision‐controlled. Ab initio computations of the electronic coupling (HDA) and the reorganization energy (λ) allow rationalization of the mechanism of the process and give insights into the possible role of intermediate complexes in the reaction mechanism.  相似文献   

18.
We have used model tripeptides GXW (with X being one of the amino acid residues glycine (G), alanine (A), leucine (L), phenylalanine (F), glutamic acid (E), histidine (H), lysine (K), or arginine (R)) to study the effects of the basicity of the amino acid residue on the radical migrations and dissociations of odd‐electron molecular peptide radical cations M.+ in the gas phase. Low‐energy collision‐induced dissociation (CID) experiments revealed that the interconvertibility of the isomers [G.XW]+ (radical centered on the N‐terminal α‐carbon atom) and [GXW].+ (radical centered on the π system of the indolyl ring) generally increased upon increasing the proton affinity of residue X. When X was arginine, the most basic amino acid, the two isomers were fully interconvertible and produced almost identical CID spectra despite the different locations of their initial radical sites. The presence of the very basic arginine residue allowed radical migrations to proceed readily among the [G.RW]+ and [GRW].+ isomers prior to their dissociations. Density functional theory calculations revealed that the energy barriers for isomerizations among the α‐carbon‐centered radical [G.RW]+, the π‐centered radical [GRW].+, and the β‐carbon‐centered radical [GRWβ.]+ (ca. 32–36 kcal mol−1) were comparable with those for their dissociations (ca. 32–34 kcal mol−1). The arginine residue in these GRW radical cations tightly sequesters the proton, thereby resulting in minimal changes in the chemical environment during the radical migrations, in contrast to the situation for the analogous GGW system, in which the proton is inefficiently stabilized during the course of radical migration.  相似文献   

19.
A neutral C4 cumulene 1 that includes a cyclic alkyl(amino) carbene (cAAC), its air‐stable radical cation 1 .+, and dication 1 2+ have been synthesized. The redox property of 1 .+ was studied by cyclic voltammetry. EPR and theoretical calculations show that the unpaired electron in 1 .+ is mainly delocalized over the central C4 backbone. The commercially available CBr4 is utilized as a source of dicarbon in the cumulene synthesis.  相似文献   

20.
In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations—a distonic indolyl N-radical (H3N+ - TrpN?) and a canonical aromatic π (Trp?+) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The π-radical cation was produced via CID of the ternary [CuII(terpy)(Trp)] ?2+ complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the π radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the π radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca.137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the ~1000–1800 cm–1 region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号