首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cu‐doped Ni‐based metal–organic frameworks (MOFs) nanomaterials fabricated through a one‐pot hydrothermal reaction were characterized, and their performance as supercapacitor electrode materials was further studied for the first time. The results indicated that the doping of foreign metals and the introduction of K3[Fe(CN)6] in the KOH electrolyte significantly improve the performance of the supercapacitor. The results indicated that the Ni2.6Cu0.4 MOFs material shows the highest specific capacitance (1282 F g?1 at 1 A g?1 in mixed 2 M KOH and 0.1 M K3[Fe(CN)6]) and optimal capacitance retention (85.7% after 2000 cycles). This work provides a feasible optimization strategy for the construction of MOFs‐based supercapacitor electrode materials with excellent performance, and also provides a reliable experimental and theoretical basis for practical industrial production.  相似文献   

2.
The activated nitrogen-enriched novel carbons (a-NENCs) have been prepared by direct carbonization of polyaniline/activated mesocarbon microbead composites and further activated by 16 M?HNO3. The electrochemical performances and supercapacitive behaviors of the a-NENCs in 6 M KOH, 1 M?H2SO4, and 0.5 M?K2SO4 solutions are evaluated by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy, cyclic life, leakage current, and self-discharge measurements. The results demonstrate that the supercapacitors perform definitely supercapacitive behaviors; especially in 6 M KOH electrolyte, the supercapacitor represents much better electrochemical performance with more excellent reversibility, shorter relaxation time of 1.11 s, and nearly ideal polarizability. The maximum specific capacitance of the supercapacitors using a-NENCs as active electrode material is 85.1 F?g?1 at a rate of 500 mA?g?1 in 6 M?KOH. These outcomes indicate that the 6 M?KOH aqueous solution is a promising electrolyte for the supercapacitor with a-NENCs as electrode material.  相似文献   

3.
Hydrophobic ionic liquid-functionalized SBA-15 modified carbon paste electrode (CPSPE) was fabricated, and its electrochemical performance was investigated by cyclic voltammetry, electrochemical impedance spectra, and chronocoulometry in K3Fe(CN)6/K4Fe(CN)6 solution. Compared with carbon paste electrode (CPE) and SBA-15 modified carbon paste electrode (CSPE), the electron transfer ability was in the sequence as: CPSPE>CSPE>CPE. Meanwhile, the electrocatalytic activity of CPSPE to catechol and hydroquinone was evaluated by cyclic voltammetry, and then, the linear concentration ranges were obtained by the amperometric detection from 2.0?×?10-5 to 3.2?×?10-4 M for catechol and 5.0?×?10-5 to 5.5?×?10-4 M for hydroquinone, with the detection limits of 5.0?×?10-7 and 6.0?×?10-7 M, respectively. The advantages of both ionic liquids and heterogeneous supports made CPSPE exhibit high electrocatalytic activity towards the redox of catechol and hydroquinone by significantly improving their reversibility and enhancing their peak currents. In addition, the present method was applied to the determination of catechol and hydroquinone in artificial wastewater sample, and the results were satisfactory.  相似文献   

4.
Porous CaC2-derived carbon (CCDC) was synthesized by one-step route from CaC2 in a freshly prepared chlorine environment at lower temperature. As-prepared CCDC was activated by H3PO4, ZnCl2, and KOH, respectively. The effects of the activation technology on the structure and morphology of CCDC were studied by X-ray diffraction, physical N2 adsorption/desorption, and transmission electron microscopy. It has been found that the pore structure and specific surface area of CCDC are apparently improved after activation; the CCDC activated by KOH especially showed an excellent specific surface area of 1,100?m2?g?1. The electrochemical performance of supercapacitors using activated CCDC as electrode active material was studied by cyclic voltammery, galvanostatic charge/discharge, and cycle life measurements. The results indicated that the CCDCs activated by H3PO4, ZnCl2, and KOH revealed enhanced capacitances of 172.6, 198.1, and 250.1?F?g?1 in 6?M KOH electrolyte, which were increased by 11.4, 27.8, and 61.2?% compared with the pristine CCDC (155?F?g?1), respectively. Furthermore, the supercapacitors using all activated CCDCs as electrode active material exhibited excellent cycle stability, and the specific capacitance for all activated CCDC samples had nearly no change after 5,000 cycles.  相似文献   

5.
In this work, we report the synthesis of porous activated carbon (AC). AC was derived from rotten carrot, at different values of activating temperature under inert atmosphere, employing chemical activation method and ZnCl2 as activation agent. On the basis of results observed by surface area and pore size analysis, effect of activation temperature on synthesized AC was determined. Other material properties such as morphology, thermal stability, vibrational response, and crystal structure of prepared AC were studied using standard techniques of material characterization. Further, the electrochemical performance of synthesized AC was studied as an electrode, in aqueous, organic and ionic liquid based electrolyte. It was found that the synthesized AC based electrode exhibits highest specific capacitance (135.5?F?g?1 at 10?mHz) in aqueous electrolyte and highest specific energy (29.1?Wh?kg?1 at 2.2?A?g?1) and specific power (142.5?kW?kg?1 at 2.2?A?g?1) in ionic liquid based electrolyte. This shows the suitability of synthesized material for use in energy storage applications.  相似文献   

6.
A Mach-Zehnder interfeometer is employed to visualize the mass transfer processes at the electrode/electrolyte interface during the potentiodynamic sweep of the Pt electrode in 0.1 mol dm?3 K4Fe(CN)6 with 0.5 mol dm?3 KCl solution at 20 mV s?1. The changes of solution??s refractive index, brought about by the mass transfer during the reaction, can be recorded in situ in interferograms. The distributions of the optical path difference are obtained by numerical reconstruction of interferograms to reflect changes of solution??s refractive index and the mass transfer processes. The mass transfer of [Fe(CN)6]4? and [Fe(CN)6]3? is presented visually. This method provides a new approach to detect the mass transfer processes at the electrode/electrolyte interface in real-time.  相似文献   

7.
Porous carbon materials with high surface area and different pore structure have been successfully prepared by phenolic resin combined with polyvinyl alcohol (PVA) and KOH as activation agents. The surface morphology, structure, and specific surface area of the carbon materials were studied by scanning electron microscopy, X-ray diffraction, and nitrogen sorption measurement, respectively. Furthermore, the effects of specific surface area, pore structure, and electrolyte on electrochemical properties were investigated by galvanostatic charge–discharge measurement. The results show that KOH–PVA-activated carbon materials display specific capacitance as high as 218 F?g?1 in 30 wt.% KOH aqueous electrolyte, 147 F?g?1 in 1 M LiPF6/(ethylene carbonate (EC) + dimethyl carbonate) (1:1?v/v), and 115 F?g?1 in 1 M Et3MeNBF4/propylene carbonate organic electrolyte, respectively. In addition, the carbon materials demonstrate long-term cycle stability, especially the AK3P-0.30 in aqueous electrolyte and the AK2P-0.30 with excellent rate capability in organic electrolyte. These reveal that the existence of a micro-mesoporous structure of activated carbon is beneficial to store energy in an aqueous supercapacitor and broad pore size distribution of activated carbon is favorable to energy storage in an organic supercapacitor. The carbon materials with pore size distribution in different ranges improve the electrochemical performance of supercapacitor in different electrolytes. A new pore-expand agent (PVA combining with KOH) was used to obtain porous carbons with enhanced properties for supercapacitor.  相似文献   

8.
For the first time, toxic bio-tars collected from the gasification of pine sawdust are used as the precursor for activated carbons. Various types of activation agents including KOH, K2CO3, H3PO4 and ZnCl2 were screened for obtaining superior activated carbons. When KOH was used as an activation agent, the obtained activated carbons exhibited high specific surface area and large mesopore volume. The activated carbons were further employed to be the electrode material of supercapacitors, and its specific capacitance reached up to 260 F g?1 at 0.25 A g?1 current density. Also, it showed an excellent rate performance from preserving a relatively high specific capacitance of 151 F g?1 at 50 A g?1. The assembled device also exhibited the good electrochemical stability with the capacity retention of 90% after 5000 cycles. Furthermore, the maximum energy density of the activated carbons in organic electrolyte reached 17.8 Wh kg?1.  相似文献   

9.
In this work, activated carbons (ACs) are obtained from petroleum pitch by the combination of a chemical treatment with different potassium permanganate (KMnO4) amounts, i.e., 0, 0.5, 1.0, and 2.0 g, and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The effects of the chemical activating agent on the surface morphology and porosity are evaluated with scanning electron microscopy and N2 adsorption isotherms at 77 K, respectively. The specific surface area of the pitch-based ACs is increased with increasing the amount of KMnO4 pre-treatment and showed the highest value of 2,334 m2 g?1 at 2 g of KMnO4 amount. The electrochemical performance of AC electrodes is examined by cyclic voltammetry and galvanostatic charge/discharge characteristics in 6 M KOH electrolyte. Among the prepared ACs, 2.0 K-ACs possesses a specific capacitance as high as 237 F g?1 and showed excellent electrochemical performance due to its suitable porous structure and low interface resistance.  相似文献   

10.
This article aims to demonstrate an electrochemically stable and reliable gold electrode‐electrolyte system to develop an insect odorant receptor (Drosophila melanogaster Or35a) based bioelectronic nose. Cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS) of bare gold electrodes, after modification with the self‐assembled monolayer (SAM) of 6‐mercaptohexanoic acid (MHA) and after immobilization with Or35a integrated into the lipid bilayers of liposomes were conducted in the presence of four different redox probes. Potassium ferri/ferrocyanide [Fe(CN)6]3?/[Fe (CN)6]4? and hydroquinone (H2Q) redox probes revealed variable and irreversible signals at the time scale of our measurements, with atomic force microscopy (AFM) images and x‐ray photoelectron spectroscopy (XPS) results suggesting gold surface etching due to the presence of CN? ions in case of [Fe(CN)6]3?/[Fe (CN)6]4?. Although the hexaammineruthenium complex showed stable electrochemical behaviour at all stages of biosensor development, changes in CV and EIS readings after each surface modifications were insignificant. PBS buffer as a non‐Faradaic medium, was found to provide reliable systems for electrochemical probing of modified gold electrodes with Or35a/liposomes in aqueous media. Using this system, we have shown that this novel biosensor can detect its known odorant E2‐hexenal selectively compared to methyl salicylate down to femtomolar concentration.  相似文献   

11.
Nanocrystalline tin‐oxide particles were prepared as electrodes on the bases of ITO glass and AT‐cut quartz crystals (sputtered gold), respectively, and characterized for their electrochemical behavior. Experiments suggested that the SnO2 particles could induce an energy barrier to the redox reactions taking place on the electrode surface. When the amount of SnO2 exceeded ca. 10?7 mol cm?2, electrochemical activity demonstrated by the solution redox couples was entirely suppressed. Nevertheless, electrochemical impedance spectroscopic (EIS) measurements suggested that mutual communication between redox couples would still take place on the surface of SnO2. For instance, although the CV curves of Fe(CN)63‐/4‐ were completely blocked, the exchange current of Fe(CN)63‐/4‐ could still flow through the tin‐oxide modified electrode, increasing with its concentration up to 40 mM. The propagation of electrons in the SnO2 film was likely via a hopping mechanism. Electrochemical quartz microbalance (EQCM) measurements, in addition, suggested that a charge‐compensating cation (K+ or H+) uptake reaction may be induced as electrons were pumped to the Sn02 electrode, while, if electrons were removed, that could cause water desorption. Analysis based on the Frumkin adsorption isotherm showed the driving force behind the adsorption of water on SnO2 is about ?2 kcal/mol. Nonetheless, the adsorbed water might face a competitive repulsion from acetonitrile when acetonitrile was used as the electrolyte medium.  相似文献   

12.
A promising nickel cobaltite oxide (NiCo2O4) composite electrode material was successfully synthesized by a sol-gel method and followed by a simple sintering process. The microstructure and surface morphology of NiCo2O4 modified by hexadecyltrimethylammonium bromide (CTAB) and polyvinyl alcohol were physically characterized by powder X-ray diffraction and scanning electron microscopy. Meanwhile, electrochemical performance was widely investigated in 2 M KOH aqueous electrolyte using cyclic voltammetry, galvanostatic charge-discharge test, and electrochemical impedance spectroscopy. The results show that evident porous microstructure was successfully fabricated by CTAB. The NiCo2O4 controlled by CTAB exhibited highly specific capacitance of 1,440 F?g?1 at a current density of 5 mA?cm?2. Remarkably, it still displays desirable cycle retention of 94.1 % over 1,000 cycle numbers at a current density of 20 mA?cm?2. The excellent electrochemical performance suggests its potential application in electrode material for electrochemical capacitors.  相似文献   

13.
The electrochemical behavior of K3[Fe(CN)6] was studied on an ITO electrode that was coated with β‐cyclodextrin (CD) modified multi‐walled carbon nanotubes (MWNTs) and with carboxyl modified multi‐walled carbon nanotubes (MWNT‐COOHs). MWNT‐COOHs showed an excellent electrocatalytic effect on the redox of K3[Fe(CN)6] while MWNT‐CDs had a subdued effect on the electrochemical response of K3[Fe(CN)6]. It is probably due to mismatching between K3[Fe(CN)6] and cyclodextrin, which hampers the contact of K3[Fe(CN)6] with carbon nanotubes. Moreover, the electrochemical behavior of K3[Fe(CN)6] on the MWNT‐COOHs coated ITO electrode at various scan rates also was measured. The results indicated that both potential difference between redox peaks and peak current of K3[Fe(CN)6] increased with increasing scan rate. A good linearity of peak current versus scan rate was observed.  相似文献   

14.
Co3O4纳米片的制备及其电化学电容性能   总被引:1,自引:0,他引:1  
以配位超分子化合物为前驱物,通过液相氧化分解得到了六方形CoOOH纳米片,进而在空气中热处理制得了Co3O4纳米片。利用XRD、TEM、FESEM对CoOOH和Co3O4纳米片的结构和形貌进行了表征。电化学测试表明,Co3O4纳米片电极在6 mol·L-1 KOH溶液中表现出良好的电化学电容特性,在电流密度为1 A·g-1其单电极比容量可达到227 F·g-1。  相似文献   

15.
In the present paper, we used single-stranded poly-T (100% thymine bases) and poly-C (100% cytosine bases) nucleic acids as DNA probes for selective and sensitive individual electrochemical determination of Hg2+ and Ag+, respectively, on the multi-walled carbon nanotube paste electrodes (MWCNTPEs) using [Fe(CN)6]3?/4? as electroactive labels. In the presence of Hg2+ and Ag+, the probe–Hg2+/Ag+ interactions through T–Hg2+–T and C–Ag+–C complexes formation could cause the formation of a unimolecular hybridized probe. This structure of probe led to its partial depletion from electrode surface and facilitation of electron transfer between [Fe(CN)6]3?/4? redox couple and electrode surface, resulting in the enhanced differential pulse voltammetry (DPV) oxidation current of [Fe(CN)6]3?/4? at the probe-modified electrode surface. We applied the difference in the oxidation peak currents of [Fe(CN)6]3?/4? before and after Hg2+/Ag+–DNA probe bonding (?I) for electrochemical determination of these heavy metal ions. Detection limits were 8.0?×?10?12 M and 1.0?×?10?11 M for Hg2+ and Ag+ ions determination, respectively. The biosensors were utilized to determine the weight percent of toxic metals, i.e., silver and mercury in dental amalgam filling composition. The results of their practical applicability in analysis of the amalgam sample were satisfactory.  相似文献   

16.
Nitrogen-doped porous carbons were prepared using a facile method, with low-biotechnology fulvic acid potassium salts as a precursor. The prepared carbons had a high surface area (1623 m2 g?1) and good electrochemical properties, making them suitable electrode materials for supercapacitors. Nitrogen-doped porous carbons were tested as an electrode in both 6 M KOH aqueous solution and different concentrations KNO3 aqueous solution. The nitrogen-doped porous carbons with unique microstructure and nitrogen functionalities exhibited a capacitance of 235 F g?1 in a 6 M KOH aqueous solution. Electrochemical investigation showed that the nitrogen-doped porous carbons exhibited a broad potential operational window in a 2.5 M KNO3 aqueous solution. Furthermore, a high capacitance retention of 88.1 % was achieved even after 5000 cycles at 1.7 V. Potassium nitrate solutions in a wide range of concentrations were also proven to be promising electrolytes for electrochemical capacitors because they are cheap, noncorrosive, electrochemically stable, and compatible to diverse current collectors.  相似文献   

17.
The electrode behavior of nanocomposite films deposited onto a sitall substrate is studied, the films containing a titanium-based conducting phase in a dielectric silicon-carbon matrix. With the films’ resistance decreasing, their electrochemical behavior changes from that of “poor conductors” to a nearly “metal-like” one. The electrode’s differential capacitance increases, and the electron transfer in the [Fe(CN)6]3-/4- redox system accelerates. This is explained by an increased number of conducting metal-containing clusters at the film/electrolyte interface.  相似文献   

18.
Demet Uzun 《Electroanalysis》2021,33(7):1699-1706
In this present study, to determine paracetamol, an electroanalytical method is presented using differential pulse voltammetry (DPV) at 3-amino-4H-1,2,4-triazole (3AT) coated glassy carbon (GC) electrode. The electrochemical characterization and electron transfer behavior of this prepared electrode in the mixture of K4[Fe(CN)6]/K3[Fe(CN)6] contains 0.1 M KCl was confirmed by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. Furthermore, scanning electron microscopy (SEM) was used to observe morphological structures of the bare and modified surfaces. The effect of pH was studied on the redox reaction of paracetamol in phosphate buffer in the range of pH 3.0–9.0. The limit of detection was 0.043 μM (3 s/m) for 3AT-GC electrode. The developed electrode was successfully utilized in pharmaceutical samples.  相似文献   

19.
Quantification of hygroscopicity of ionic liquids (ILs) is of great importance in both fundamental studies and practical applications of ILs. This study demonstrates an electrochemical method for effectively quantifying the hygroscopicity of ILs through electrochemically monitoring water contents absorbed into ILs. The measurements of water content absorbed into the ILs are performed with square wave voltammetry (SWV) based on the water‐induced enhancement of diffusion of solution‐dissolved potassium ferricyanide (K3Fe(CN)6) redox probe. For demonstration, two kinds of ILs with different hygroscopicity (i.e., hydrophilic Bmim+Gly? and hydrophobic Bmim+PF6?) are employed in this study. The dissolution of K3Fe(CN)6 redox probe into ILs is found to have little effect on the hygroscopicity of ILs. The hygroscopicity of ILs is thus able to be quantified by monitoring water content absorbed into ILs as a function of time when ILs are stored at room temperature and standard atmospheric pressure under 55 % relative humidity (RH). Under the conditions employed in this study, the hygroscopicity of Bmim+Gly? and Bmim+PF6? is determined to be 1.33 M per hour and 0.05 M per hour, respectively, which are almost consistent with those measured with Karl Fischer titration under the same conditions. The electrochemical method demonstrated in this study is experimentally simply and environmentally benign and may be potentially extended for general quantification of hygroscopicity of ILs.  相似文献   

20.
In this paper, Schiffbases were investigated using cyclic voltammetry (CV) and impedance electrochemical spectroscopy (EIS) techniques by means of self‐assembled monolayers for the first time, where a 0.1 M KCl solution and the redox couple of Fe(CN)63?/Fe(CN)64?were used as the electrolyte and probing‐pin, respectively. The monolayers formed by the employed Schiff base were proved to be relatively stable, and its electrochemical response in the studied system with different pH values was also de scribed clearly with CV and EIS plots. The results show that the monolayer of Schiff bases could exist in the solution with pH value from 2 to 10. In the EIS measurement in the concentration range from 10?5 M to 5× 10?4 M, a nearly linear relation ship between the charge transfer resistance (Rct) and the logarithm concentration of Cu2+was observed, suggesting that Cu2+ could be titrated with the EIS method quasi‐quantitatively. The phenomenon agreed with the former report very well. Using the self‐assembled monolayers to study Schiff bases with the electrochemical method is the major contribution of our work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号