首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate the Stokes system and the biharmonic equation in a half‐space of ?n. Our approach rests on the use of a family of weighted Sobolev spaces as a framework for describing the behaviour at infinity. A complete class of existence, uniqueness and regularity results for both the problems is proved. The proofs are mainly based on the principle of reflection. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
We study the convergence of two generalized marker‐and‐cell covolume schemes for the incompressible Stokes and Navier–Stokes equations introduced by Cavendish, Hall, Nicolaides, and Porsching. The schemes are defined on unstructured triangular Delaunay meshes and exploit the Delaunay–Voronoi duality. The study is motivated by the fact that the related discrete incompressibility condition allows to obtain a discrete maximum principle for the finite volume solution of an advection–diffusion problem coupled to the flow. The convergence theory uses discrete functional analysis and compactness arguments based on recent results for finite volume discretizations for the biharmonic equation. For both schemes, we prove the strong convergence in L2 for the velocities and the discrete rotations of the velocities for the Stokes and the Navier–Stokes problem. Further, for one of the schemes, we also prove the strong convergence of the pressure in L2. These predictions are confirmed by numerical examples presented in the article. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1397–1424, 2014  相似文献   

3.
We propose a stabilized finite element method for the approximation of the biharmonic equation with a clamped boundary condition. The mixed formulation of the biharmonic equation is obtained by introducing the gradient of the solution and a Lagrange multiplier as new unknowns. Working with a pair of bases forming a biorthogonal system, we can easily eliminate the gradient of the solution and the Lagrange multiplier from the saddle point system leading to a positive definite formulation. Using a superconvergence property of a gradient recovery operator, we prove an optimal a priori estimate for the finite element discretization for a class of meshes.  相似文献   

4.
Biharmonic equations have many applications, especially in fluid and solid mechanics, but is difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary conditions. The irregular domain is embedded into a rectangular region and the biharmonic equation is decoupled to two Poisson equations. An auxiliary unknown quantity Δu along the boundary is introduced so that fast Poisson solvers on irregular domains can be used. Non-trivial numerical examples show the efficiency of the proposed method. The number of iterations of the method is independent of the mesh size. Another key to the method is a new interpolation scheme to evaluate the residual of the Schur complement system. The new biharmonic solver has been applied to solve the incompressible Stokes flow on an irregular domain.   相似文献   

5.
Summary. In this paper we propose and analyze an efficient discretization scheme for the boundary reduction of the biharmonic Dirichlet problem on convex polygonal domains. We show that the biharmonic Dirichlet problem can be reduced to the solution of a harmonic Dirichlet problem and of an equation with a Poincaré-Steklov operator acting between subspaces of the trace spaces. We then propose a mixed FE discretization (by linear elements) of this equation which admits efficient preconditioning and matrix compression resulting in the complexity . Here is the number of degrees of freedom on the underlying boundary, is an error reduction factor, or for rectangular or polygonal boundaries, respectively. As a consequence an asymptotically optimal iterative interface solver for boundary reductions of the biharmonic Dirichlet problem on convex polygonal domains is derived. A numerical example confirms the theory. Received September 1, 1995 / Revised version received February 12, 1996  相似文献   

6.
We propose two new boundary integral equation formulas for the biharmonic equation with the Dirichlet boundary data that arises from plate bending problems in ℝ2. Two boundary conditions, u and ∂u/∂n, usually yield a 2 × 2 non-symmetric matrix system of integral equations. Our new formulas yield scalar integral equations that can be handled more efficiently for theoretical and numerical purposes. In this paper we supply complete ellipticity and solvability analyses of our new formulas. Numerical experiments for simple Galerkin methods are also provided. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Summary In this paper we derive error estimates for a class of finite element approximation of the Stokes equation. These elements, popular among engineers, are conforming lagrangian both in velocity and pressure and therefore based on a mixed variational principle. The error estimates are established from a new Brezzi-type inequality for this kind of mixed formulation. The results are true in 2 or 3 dimensions.  相似文献   

8.
Summary. The - spectral element discretization of the Stokes equation gives rise to an ill-conditioned, indefinite, symmetric linear system for the velocity and pressure degrees of freedom. We propose a domain decomposition method which involves the solution of a low-order global, and several local problems, related to the vertices, edges, and interiors of the subdomains. The original system is reduced to a symmetric equation for the velocity, which can be solved with the conjugate gradient method. We prove that the condition number of the iteration operator is bounded from above by , where C is a positive constant independent of the degree N and the number of subdomains, and is the inf-sup condition of the pair -. We also consider the stationary Navier-Stokes equations; in each Newton step, a non-symmetric indefinite problem is solved using a Schwarz preconditioner. By using an especially designed low-order global space, and the solution of local problems analogous to those decribed above for the Stokes equation, we are able to present a complete theory for the method. We prove that the number of iterations of the GMRES method, at each Newton step, is bounded from above by . The constant C does not depend on the number of subdomains or N, and it does not deteriorate as the Newton iteration proceeds. Received March 2, 1998 / Revised version received October 12, 1999 / Published online March 20, 2001  相似文献   

9.
In this paper our objective is to provide physically reasonable solutions for the stationary Navier–Stokes equations in a two-dimensional domain with two outlets to infinity, a semi-strip Π and a half-plane K. The same problem in an aperture domain, i.e. in a domain with two half-plane outlets to infinity, has been studied but only under symmetry restrictions on the data. Here, we assume that the main asymptotic term of the solution takes an antisymmetric form in K and apply the technique of weighted spaces with detached asymptotics, i.e. we use spaces where the functions have prescribed asymptotic forms in the outlets.After first showing that the corresponding Stokes problem admits a unique solution if and only if certain compatibility conditions are satisfied, we write the Navier–Stokes equations as a perturbation of the Stokes problem and the crucial compatibility condition as an algebraic equation by which the flux becomes determined. Assuming that the coefficient of the main (antisymmetric) asymptotic term of the solution in K does not vanish and that the data are sufficiently small, we use a contraction principle to solve the Navier–Stokes system coupled with the algebraic equation.Finally, we discuss the ill-posedness of the Navier–Stokes problem with prescribed flux.  相似文献   

10.
Victor Didenko  Johan Helsing 《PAMM》2013,13(1):435-438
This paper deals with approximate solutions to integral equations arising in boundary value problems for the biharmonic equation in simply connected piecewise smooth domains. The approximation method considered demonstrates excellent convergence even in the case of boundary conditions discontinuous at corner points. In an application we obtain very accurate approximations for some characteristics of two-dimensional Stokes flow in non-smooth domains. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The behavior of solutions to the biharmonic equation is well-understood in smooth domains. In the past two decades substantial progress has also been made for the polyhedral domains and domains with Lipschitz boundaries. However, very little is known about higher order elliptic equations in the general setting. In this paper we introduce new integral identities that allow to investigate the solutions to the biharmonic equation in an arbitrary domain. We establish: (1) boundedness of the gradient of a solution in any three-dimensional domain; (2) pointwise estimates on the derivatives of the biharmonic Green function; (3) Wiener-type necessary and sufficient conditions for continuity of the gradient of a solution. Mathematics Subject Classification (2000)  35J40, 35J30, 35B65  相似文献   

12.
In this paper we present a new method to solve the 2D generalized Stokes problem in terms of the stream function and the vorticity. Such problem results, for instance, from the discretization of the evolutionary Stokes system. The difficulty arising from the lack of the boundary conditions for the vorticity is overcome by means of a suitable technique for uncoupling both variables. In order to apply the above technique to the Navier–Stokes equations we linearize the advective term in the vorticity transport equation as described in the development of the paper. We illustrate the good performance of our approach by means of numerical results, obtained for benchmark driven cavity problem solved with classical piecewise linear finite element.  相似文献   

13.
In this paper we establish the existence and uniqueness of solutions for nonlinear evolution equations on a Banach space with locally monotone operators, which is a generalization of the classical result for monotone operators. In particular, we show that local monotonicity implies pseudo-monotonicity. The main results are applied to PDE of various types such as porous medium equations, reaction–diffusion equations, the generalized Burgers equation, the Navier–Stokes equation, the 3D Leray-α model and the p-Laplace equation with non-monotone perturbations.  相似文献   

14.
In this paper, we prove new embedding results by means of subspace interpolation theory and apply them to establishing regularity estimates for the biharmonic Dirichlet problem and for the Stokes and the Navier–Stokes systems on polygonal domains. The main result of the paper gives a stability estimate for the biharmonic problem at the threshold index of smoothness. The classic regularity estimates for the biharmonic problem are deduced as a simple corollary of the main result. The subspace interpolation tools and techniques presented in this paper can be applied to establishing sharp regularity estimates for other elliptic boundary value problems on polygonal domains.  相似文献   

15.
In this paper, we establish a new local and parallel finite element discrete scheme based on the shifted‐inverse power method for solving the biharmonic eigenvalue problem of plate vibration. We prove the local error estimation of finite element solution for the biharmonic equation/eigenvalue problem and prove the error estimation of approximate solution obtained by the local and parallel scheme. When the diameters of three grids satisfy H4 = ?(w2) = ?(h), the approximate solutions obtained by our schemes can achieve the asymptotically optimal accuracy. The numerical experiments show that the computational schemes proposed in this paper are effective to solve the biharmonic eigenvalue problem of plate vibration.  相似文献   

16.
Summary. (A Converse to the Mean Value Theorem for Biharmonic Functions.) We prove a converse to the mean value theorem for classical biharmonic functions.  相似文献   

17.
Summary. In this paper we study the relationship between the Hermann-Miyoshi and the Ciarlet-Raviart formulations of the first biharmonic problem. This study will be based on a decomposition principle which will leads us to a new convergence analysis explaining some discrepancies between numerical results obtained with the first formulation on certain meshes and some theoretical convergence results. Received May 24, 1994 / Revised version received August 11, 1995  相似文献   

18.
In this paper, a new class of Zienkiewicz-type non-conforming finite element, in n spatial dimensions with n ≥ 2, is proposed. The new finite element is proved to be convergent for the biharmonic equation. The work was supported by the National Natural Science Foundation of China (10571006). This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang Professorship through Peking University.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号