首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
When nanoparticles enter biological environments, proteins adsorb to form the “protein corona” which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation. We investigate roles of electrostatic and entropic interactions driving selective corona formation. Lastly, we study real-time protein binding on ssDNA-SWCNTs, obtaining agreement between enriched proteins binding strongly and depleted proteins binding marginally, while highlighting cooperative adsorption mechanisms. Knowledge of protein corona composition, formation mechanisms, and dynamics informs nanoparticle translation from in vitro design to in vivo application.  相似文献   

3.
Nanoparticles taken into biological systems can have biological impacts through their interactions with cell membranes, accompanied by protein adsorption onto the nanoparticle surfaces, forming a so-called protein corona. Our current research aims to demonstrate that nanoscale protein aggregates behave like such nanoparticles with regard to the interaction with lipid membranes. In this study, the adsorption and disruption of the lipid membranes by protein aggregates were investigated using amyloid fibrils and nanoscale thermal aggregates of lysozyme. Both types of protein aggregates had disruptive effects on the negatively charged liposomes, similar to polycationic nanoparticles. Interestingly, adsorption of liposomes on the amyloid fibrils preceding disruption occurred even if the net charge of the liposome was zero, suggesting the importance of hydrophobic interactions in addition to electrostatic interactions. The results of the present study provide new insights into the biological impacts of nanoparticles in vivo.  相似文献   

4.
Nam EJ  Kim EJ  Wark AW  Rho S  Kim H  Lee HJ 《The Analyst》2012,137(9):2011-2016
A novel electrochemical detection methodology is described for the femtomolar detection of proteins which utilizes both DNA aptamer-functionalized nanoparticles and a surface enzymatic reaction. Immunoglobulin E (IgE) was used as a model protein biomarker, which possesses two distinct epitopes for antibody (anti-IgE) and DNA aptamer binding. A surface sandwich assay format was utilized involving the specific adsorption of IgE onto a gold electrode surface that was pre-modified with a monolayer of aptamer-nanoparticle conjugates followed by the specific interaction of alkaline phosphatase (ALP) conjugated anti-IgE. To clearly demonstrate the signal enhancement associated with nanoparticle use, anodic current measurements of the ALP catalyzed oxidation of the enzyme substrate 4-aminophenylphosphate (APP) were also compared with electrode surfaces upon which the aptamer was directly attached. The detection of an unlabelled protein at concentrations as low as 5 fM is a significant improvement compared to conventional electrochemical-based immunoassay approaches and provides a foundation for the practical use and incorporation of nanoparticle-enhanced detection into electrochemical biosensing technologies.  相似文献   

5.
A two-dimensional hexagonally close-packed (2D-HCP) array of ferritin molecules with a nanoparticle core was fabricated directly on a carbonaceous solid substrate by genetically modifying the outer surface of the ferritin with carbonaceous materials-specific binding peptides. The displayed peptides endowed ferritins with a specific protein-substrate interaction and masked the strong nonspecific interaction. The specific interaction was weak enough to allow ferritins to be rearranged as well as an attractive protein-protein interaction that could be adjusted by selecting the buffer conditions. This method not only produced 2D-HCP arrays of ferritin but also 2D-ordered arrays of independent inorganic nanoparticles after protein elimination that can be applied to floating gate memories.  相似文献   

6.
Peptides that bind inorganic surfaces and template the formation of nanometer-sized inorganic particles are of great interest for the self- or directed assembly of nanomaterials for sensors and diagnostic applications. These surface-recognizing peptides can be identified from combinatorial phage-display peptide libraries, but little experimental information is available for understanding the relationship between the peptide sequence, structure at the nanoparticle surface, and function. We have developed NMR methods to determine the structures of peptides bound to inorganic nanoparticles and report on the structure of three peptides bound to silica and titania surfaces. Samples were prepared under conditions leading to rapid peptide exchange at the surface such that solution-based nuclear Overhauser experiments can be used to determine the three-dimensional structure of the bound peptide. The binding motif is defined by a compact "C"-shaped structure for the first six amino acids in the 12-mer. The orientation of the peptide on the nanoparticle surface was determined by magnetization transfer from the nanoparticle surface to the nearby peptide protons. These methods can be applied to a wide variety of abiotic interfaces to provide an insight into the relationship between the primary sequence of peptides and their functionality at the interface.  相似文献   

7.
Gold nanoparticles having peptide chains on the surfaces have been prepared yb ring-opening polymerization of gamma-methyl L-glutamate N-carboxyanhydride with fixed amino groups on the nanoparticle surface as an initiator. The number of peptide chains on the surface was adjusted to ca. 2 molecules per gold nanoparticle by controlling the number of fixed amino groups on the surface. The peptide chains on the surface were partially saponified to obtain poly(gamma-methyl L-glutamate-co-L-glutamic acid) with 28 mol% of glutamic acid residues. The number-average molecular weight of the peptide was 73,000. We described structural control of the peptide-coated gold nanoparticle assembly by conformational transition of the surface peptides. In deionized water, the peptide chains on the nanoparticle took a random coil conformation, and the individual nanoparticles existed in dispersed globular species. On the other hand, the peptide chains on the nanoparticle took an alpha-helical conformation in trifluoroethanol. Under this condition, the alpha-helical peptide chains on distinct gold nanoparticles connected the nanoparticles to form a fibril assembly owing to the dipole-dipole interaction between the surface peptide chains. The morphology of the peptide-coated gold nanoparticle assembly could be controlled by the conformational transition of surface peptides, which was attended by solution composition changes.  相似文献   

8.
The ability to precisely and remotely modulate reversible binding interactions between biomolecules and abiotic surfaces is appealing for many applications. To achieve this level of control, an azobenzene‐based optical switch is added to nanoparticle‐binding peptides in order to switch peptide conformation and attenuate binding affinity to gold surfaces via binding and dissociation of peptides.  相似文献   

9.
Self-organization of membrane-embedded peptides and proteins causes the formation of lipid mesostructures in the membranes. One example is purple membranes (PM), which consist of lipids and bacteriorhodopsin (BR) as the only protein component. The BRs form a hexagonal crystalline lattice. A complementary structure is formed by the lipids. Employing BR and PM as an example, we report a method where major parts of the mesoscopic self-assembled protein structures can be extracted from the lipid bilayer membrane. A complementary lipid nanostructure remains on the substrate. To remove such a large number of thiolated proteins simultaneously by applying a mechanical force, they are first reacted at physiological conditions with gold nanoparticles, and then a thin gold film is sputtered onto them that fuses with the gold nanoparticles forming a uniform layer, which finally can be lifted off. In this step, all of the previously gold-labeled proteins are pulled out of the membrane simultaneously. A stable lipid nanostructure is obtained on the mica substrate. Its stability is due to either binding of the lipids to the substrate through ionic bonds or to enough residual proteins to stabilize the lipid nanostructure against reorganization. This method may be applied easily and efficiently wherever thiolated proteins or peptides are employed as self-assembling and structure-inducing units in lipid membranes.  相似文献   

10.
We have developed a colloidal assembly for the study of plasmon–plasmon interactions between gold nanoparticles. Colloidal aggregates of controlled size and interparticle spacing were synthesized on silica nanoparticle substrates. Following the immobilization of isolated gold nanoparticles onto silica nanoparticles, the surfaces of the adsorbed gold nanoparticles were functionalized with 4-aminobenzenethiol. This molecular linker attached additional gold nanoparticles to the ‘parent' gold nanoparticle, forming small nanoparticle aggregates. The optical absorption spectrum of these clusters differed from that of gold colloid in a manner consistent with plasmon–plasmon interactions between the gold nanoparticles.  相似文献   

11.
An important point regarding the development of stable biofunctional nanoparticles for biomedical applications is their potential for aspecific interactions with the molecules of the biological environment. Here we report a new self-assembled ligand monolayer system for gold nanoparticles called Mix-matrices, formed by a mixture of HS-PEG and alcohol peptides (peptidols) molecules. Stability of the Mix-capped nanoparticles prepared in various conditions was assessed using tests of increasing stringency. The results highlight the importance of identifying a concentration of ligands sufficiently high to obtain a compact matrix when preparing nanoparticles and that the stability of capped nanoparticles in biological environments cannot be predicted solely on their resistance to electrolyte-induced aggregation. The Mix-capped nanoparticles are resistant to aggregation induced by electrolytes and to aspecific interactions with proteins and ligand exchange. In addition, Mix-matrices allow the easy introduction of a single recognition function per nanoparticle, allowing the specific and stoichiometric labeling of proteins with gold nanoparticles. Therefore, the Mix-matrices provide a useful tool for the development of nanoparticle-based quantitative bioanalytical and imaging techniques, as well as for therapeutic purposes, such as the specific targeting of cancerous cells for photothermal destruction.  相似文献   

12.
A novel open-tubular capillary electrochromatography (OTCEC) column was prepared by immobilizing dodecanethiol gold nanoparticles on prederivatised fused-silica capillary columns with sol-gel technology. 3-Mercaptopropyl-trimethoxysilane (MPTMS) was selected as sol-gel precursor to develop a sol-gel layer on the inner wall of the capillary, prior to assembly of dodecanethiol gold nanoparticles onto the generated sol-gel layer through specific interaction between the gold nanoparticles and surface terminating thiol groups. The electrochromatographic behaviour of the sol-gel gold nanoparticle capillary was compared with a gold nanoparticle capillary prepared via MPTMS surface functionalisation, through variation of the percentage of the organic modifier, pH, and separation voltage. Efficient separation for a "reversed-phase" test mixture of thiourea, naphthalene, and biphenyl and for selected polycyclic aromatic hydrocarbons (PAHs) was obtained on the sol-gel based gold nanoparticle capillaries. OTCEC separations of three selected drug substances (propiophenone, benzoin, and warfarin) were also demonstrated. Scanning electron microscopy was used for the characterization of the sol-gel gold nanoparticle capillary surface. The results confirm that dodecanethiol gold nanoparticles, bound on the sol-gel-based inner layer of fused-silica capillary, can provide sufficient solute-bonded phase interactions for OTCEC with reproducible retention as well as characteristic reversed-phase behaviour.  相似文献   

13.
14.
We report a facile approach to the conjugation of protein-encapsulated gold fluorescent nanoclusters to the iron oxide nanoparticles through catechol reaction. This method eliminates the use of chemical linkers and can be readily extended to the conjugation of biological molecules and other nanomaterials onto nanoparticle surfaces. The key to the success was producing water-soluble iron oxide nanoparticles with active catechol groups. Further, advanced electron microscopy analysis of the integrated gold nanoclusters and iron oxide nanoparticles provided direct evidence of the presence of a single fluorescent nanocluster per protein template. Interestingly, the integrated nanoparticles exhibited enhanced fluorescent emission in biological media. These studies will provide significantly practical value in chemical conjugation, the development of multifunctional nanostructures, and exploration of multifunctional nanoparticles for biological applications.  相似文献   

15.
Free‐standing nanoparticle films are of great importance for developing future nano‐electronic devices. We introduce a protein‐based fabrication strategy of free‐standing nanoparticle monolayer films. α‐Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold‐nanoparticle monolayer film interconnected by protein β‐sheet interactions. Owing to the stable protein–protein interaction, the film was successfully expanded to a 4‐inch diameter sheet, which has not been achieved with any other free‐standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer‐scale and thus unprecedented double‐component nanoparticle films were fabricated. Therefore, the free‐floating gold‐nanoparticle monolayer sheets with these properties could make the film useful for the development of bio‐integrated nano‐devices and high‐performance sensors.  相似文献   

16.
Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials.  相似文献   

17.
The interaction between DNA and inorganic surfaces has attracted intense research interest, as a detailed understanding of adsorption and desorption is required for DNA microarray optimization, biosensor development, and nanoparticle functionalization. One of the most commonly studied surfaces is gold due to its unique optical and electric properties. Through various surface science tools, it was found that thiolated DNA can interact with gold not only via the thiol group but also through the DNA bases. Most of the previous work has been performed with planar gold surfaces. However, knowledge gained from planar gold may not be directly applicable to gold nanoparticles (AuNPs) for several reasons. First, DNA adsorption affinity is a function of AuNP size. Second, DNA may interact with AuNPs differently due to the high curvature. Finally, the colloidal stability of AuNPs confines salt concentration, whereas there is no such limit for planar gold. In addition to gold, graphene oxide (GO) has emerged as a new material for interfacing with DNA. GO and AuNPs share many similar properties for DNA adsorption; both have negatively charged surfaces but can still strongly adsorb DNA, and both are excellent fluorescence quenchers. Similar analytical and biomedical applications have been demonstrated with these two surfaces. The nature of the attractive force however, is different for each of these. DNA adsorption on AuNPs occurs via specific chemical interactions but adsorption on GO occurs via aromatic stacking and hydrophobic interactions. Herein, we summarize the recent developments in studying non-thiolated DNA adsorption and desorption as a function of salt, pH, temperature and DNA secondary structures. Potential future directions and applications are also discussed.  相似文献   

18.
When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new “identity” and determine their biological fate. Protein–nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non‐covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide‐co‐ε‐caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol‐ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol‐ene reaction.  相似文献   

19.
Natural systems often utilize a single protein to perform multiple functions. Control over functional specificity is achieved through interactions with other proteins at well-defined epitope binding sites to form a variety of functional coassemblies. Inspired by the biological use of epitope recognition to perform diverse yet specific functions, we present a Template Engineering Through Epitope Recognition (TEThER) strategy that takes advantage of noncovalent, molecular recognition to achieve functional versatility from a single protein template. Engineered TEThER peptides span the biologic-inorganic interface and serve as molecular bridges between epitope binding sites on protein templates and selected inorganic materials in a localized, specific, and versatile manner. TEThER peptides are bifunctional sequences designed to noncovalently bind to the protein scaffold and to serve as nucleation sites for inorganic materials. Specifically, we functionalized identical clathrin protein cages through coassembly with designer TEThER peptides to achieve three diverse functions: the bioenabled synthesis of anatase titanium dioxide, cobalt oxide, and gold nanoparticles in aqueous solvents at room temperature and ambient pressure. Compared with previous demonstrations of site-specific inorganic biotemplating, the TEThER strategy relies solely on defined, noncovalent interactions without requiring any genetic or chemical modifications to the biomacromolecular template. Therefore, this general strategy represents a mix-and-match, biomimetic approach that can be broadly applied to other protein templates to achieve versatile and site-specific heteroassemblies of nanoscale biologic-inorganic complexes.  相似文献   

20.
Confining organic molecules to the surfaces of inorganic nanoparticles can induce intermolecular interactions between them, which can affect the composition of the mixed self‐assembled monolayers obtained by co‐adsorption from solution of two different molecules. Two thiolated ligands (a dialkylviologen and a zwitterionic sulfobetaine) that can interact with each other electrostatically were coadsorbed onto gold nanoparticles. The nanoparticles favor a narrow range of ratios of these two molecules that is largely independent of the molar ratio in solution. Changing the solution molar ratio of the two ligands by a factor of 5 000 affects the on‐nanoparticle ratio of these ligands by only threefold. This behavior is reminiscent of the formation of insoluble inorganic salts (such as AgCl), which similarly compensate positive and negative charges upon crystallizing. Our results pave the way towards developing well‐defined hybrid organic–inorganic nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号