首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The degree of phase separation in several moisture‐cured poly(urethane urea)s (PUUs) was studied by FTIR spectroscopy, wide angle X‐ray diffraction (WAXD), and temperature‐modulated differential scanning calorimetry (TMDSC). This latter technique was shown to be particularly useful in analysing the degree of phase separation in PUU polymers. Both phase mixing and phase segregation coexisted in the PUUs and the degree of phase separation increased as the urea hard segment (HS) content in the PUU increased. The maximum solubility of urea HSs into the polyol soft segments (SSs) was achieved for 50 wt % urea HS content in diol‐based PUUs, whereas for triol‐based PUUs the highest solubility between HS and SS was reached for lower urea HS amount. Finally, the higher the urea HS content the higher the extent of phase separation in the PUU. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3034–3045, 2007  相似文献   

2.
Polyurethanes were prepared from 4,4′-methylenebis (phenyl isocyanate) (MDI), 1,4-butanediol (BD), and poly(tetrahydrofurane) polyether polyol (PTHF) by melt polymerization. The –OH functional group ratio of polyol/total diol was kept constant at 0.4, while the ratio of the isocyanate and hydroxyl groups (NCO/OH) changed between 0.940 and 1.150. The thermal analysis of the polymers by DSC and DMTA measurements indicated several transitions. The three glass transition temperatures observed were assigned to the relaxation of the aliphatic –CH2– groups of the polyol, and to that of the soft and hard segments, respectively. The glass transition temperature of the soft and hard phase changed with the NCO/OH ratio indicating changes in phase structure and composition confirmed also by the maximum in the number of relaxing soft segments. Changes in the relatively small number of end-groups result in considerable modification of mechanical properties. Strength is determined by molecular mass and interactions, while stiffness depends mainly on phase structure. Surprisingly enough, –OH excess yields stiffer polymers, since the interaction of the –OH groups results in a decrease in the amount of the soft phase. A unique correlation was found between tensile modulus and the number of relaxing soft segments.  相似文献   

3.
The microphase separation (MPS) in polyureas based on methylene diphenyl diisocyanate (MDI) hard segment, diethyltoluenediamine chain extender, and amino-terminated polypropylene glycol soft segment prepared by reaction injection molding (RIM) was studied by advanced solid-state NMR spectroscopy. Incomplete microphase separation leads to the presence of mobilized hard segments dispersed in the soft segment domains as well as immobilized soft segments residing in the hard domains. This is detected by 1H-NMR spectra recorded under spinning at the magic angle (MAS) as well as two-dimensional wide-line separation (WISE) NMR spectra. The sizes of the various domains as well as the interfaces between them are quantified by spin diffusion measurements. In this way the impact of annealing, method of polymerization, and hard segment content on MPS is studied. Whereas annealing at temperatures up to 170°C results in improving the MPS, major changes are observed after annealing at higher temperatures (190°C), where the system changes from “soft-in-hard” to “hard-in-soft” behavior. The MPS decreases with increasing hard segment content. The highest MPS is observed for solution polymerized samples. The various NMR experiments clearly reveal the nonequilibrium nature of RIM systems. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 693–703, 1998  相似文献   

4.
We prepared polyurethane block copolymers with both 50 and 70% soft segment concentrations, using 4,4′‐diphenylmethane diisocyanate–poly(propylene glycol) prepolymer and 1,4‐butanediol, cis‐2‐butene‐1,4‐diol, and 2‐butyne‐1,4‐diol as chain extenders. The effects of the different chain extenders were observed during synthesis and in the final products. A comparison of spectroscopic, mechanical, and thermal data reveals that polymer properties can be significantly altered by differences in chemical bonding within the chain extender backbone. Although all data support the expected differences in phase morphology between the two series of samples, they also suggest that increasing chain extender unsaturation reduced reactivity with isocyanate, adversely affected hydrogen bonding, lowered the degree of crystallinity of the hard segments, and decreased phase separation. The tensile strength, elongation, modulus, and elastic recovery decreased and the electrical conductivity of iodine‐doped samples increased with increasing chain extender unsaturation. The thermal stability of the urethane group was also lower in samples with increased unsaturation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1316–1333, 2002  相似文献   

5.
Poly(ε‐caprolactone)‐based segmented polyurethanes (PCLUs) were prepared from poly(ε‐caprolactone) diol, diisocyanates (DI), and 1,4‐butanediol. The DIs used were 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluenediisocyanate (TDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate (HDI). Differential scanning calorimetry, small‐angle X‐ray scattering, and dynamic mechanical analysis were employed to characterize the two‐phase structures of all PCLUs. It was found that HDI‐ and MDI‐based PCLUs had higher degree of microphase separation than did IPDI‐ and TDI‐based PCLUs, which was primarily due to the crystallization of HDI‐ and MDI‐based hard‐segments. As a result, the HDI‐based PCLU exhibited the highest recovery force up to 6 MPa and slowest stress relaxation with increasing temperature. Besides, it was found that the partial damage in hard‐segment domains during the sample deformation was responsible for the incomplete shape‐recovery of PCLUs after the first deformation, but the damage did not develop during the subsequent deformation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 557–570, 2007  相似文献   

6.
A series of polyester‐based poly(urethane urea) (PUU) aqueous dispersions with well‐defined hard segments were prepared from polyester polyol, 4,4′‐diphenylmethane diisocyanate, dimethylolpropionic acid, 1,4‐butanediol, isophorone diisocyanate, and ethylenediamine. These anionic‐type aqueous dispersions had good dispersity in water and were stable at the ambient temperature for more than 1 year. For these aqueous dispersions, the particle size decreased as the hard‐segment content increased, and the polydispersity index was very narrow (<1.10). Films prepared with the PUU aqueous dispersions exhibited excellent waterproof performance: the amount of water absorption was as low as 5.0 wt %, and the contact angle of water on the surface of this kind of film was as high as 103° (this led to a hydrophobic surface). The water‐resistant property of these waterborne PUU films could be well correlated with some crystallites and ordered structures of the well‐defined hard segments formed by hydrogen bonding between the urethane/urethane groups and urethane/ester groups, as well as the degree of microphase separation between the hard and soft segments in the PUU systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2606–2614, 2005  相似文献   

7.
The effect of cationic groups within hard segments on shape memory polyurethane (SMPU) fibers was studied and the cyclic tensile testing was conducted to assess the shape memory effect. Mechanical properties, hard segment crystallization, and dynamic mechanical properties of SMPU ionomer fibers composed of 1,4‐butanediol (BDO), N‐methyldiethanolamine (NMDA), 4,4′‐methylenebis(phenyl isocyanate) (MDI), and poly(butylene adipate)diol (PBA) were investigated using a universal tensile tester, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results demonstrate that only 2 wt% NMDA can significantly change the glass transition temperature of the soft segment phase. DSC shows that the ionic group within hard segments can facilitate the crystallization of hard segments in unsteamed SMPU ionomer fibers. But for steamed fiber specimens, this effect is insignificant. Moreover, the ionic groups in hard segments with different hard segment contents (HSC) have different effects. In unsteamed fibers with 64 wt% HSC, 2 wt% NMDA increases the glass transition of soft segments from 63.5 to 70.6°C. However, in fibers with 55 wt% HSC, the glass transition temperature is lowered from 46.7 to 33.5°C. The post‐treatment, high‐pressure steaming is an effective way to remove the internal stress and subsequently improve the dimensional stability of SMPU ionomer fibers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Polyester-based polyurethanes were synthesized from 4,4′-methylenebis(phenyl isocyanate) (MDI) with butanediol as a chain extender and low molecular weight polyester–diol as a soft segment. Two polyesters were used in the synthesis of polyurethanes. One of the polyesters was synthesized from adipic acid and 1,6-hexanediol, which had an even number of carbon atoms. The other polyester was synthesized from pimelic acid and 1,5-pentanediol, which had an odd number of carbon atoms. The effect of even carbon monomers and odd carbon monomers of polyester soft segments on the phase segregation of soft and hard segments was studied by DSC (differential scanning calorimetry) and FTIR (Fourier transform infrared spectroscopy). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2095–2104, 1999  相似文献   

9.
Main‐chain liquid‐crystalline polyurethanes were synthesized based on a high aspect ratio mesogenic diol (4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐benzoic acid 4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐phenyl ester) as a chain extender; polycaprolactone (PCL) diol soft segments of different number‐average molecular weights (530, 1250, or 2000); and different diisocyanates, including 1,4‐hexamethylene diisocyanate (HMDI), 4,4′‐methylene bis(cyclohexyl isocyanate) (H12MDI), and 4,4′‐methylene bis(phenyl isocyanate) (MDI). The structure of the polymers was confirmed with Fourier transform infrared spectroscopy, and differential scanning calorimetry and polarizing microscopy measurements were carried out to examine the liquid‐crystalline and thermal properties of the polyurethanes, respectively. The mesogenic diol was partially replaced with 20–50 mol % PCL. A 20 mol % mesogen content was sufficient to impart a liquid crystalline property to all the polymers. The partial replacement of the mesogenic diol with PCL of various molecular weights, as well as the various diisocyanates, influenced the phase transitions and the occurrence of mesophase textures. Characteristic liquid‐crystalline textures were observed when a sufficient content of the mesogenic diol was present. Depending on the flexible spacer length and the mesogenic content, grained and threadlike textures were obtained for the HMDI and H12MDI series polymers, whereas the polyurethanes prepared from MDI showed only grained textures for all the compositions. The polymers formed brittle films and could not be subjected to tensile tests. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1527–1538, 2002  相似文献   

10.
Two series of thin films of polyether-based polyurethane-silica nanocomposites having hard segment content of 51% and 34% and different concentrations of SiO2 nanoparticles (0, 0.5, 1.0 and 3.0 vol.%) have been prepared. Infrared linear dichroic (LDIR) ratio, mechanical and differential scanning calorimetry (DSC) measurements were performed in order to determine the influence of hydrogen bonding on their mechanical and thermal properties. The degree of phase separation (DPS) and orientational functions in dependence on strain were calculated from the polarized IR spectra. The presence of silica nanoparticles gives rise to significant differences in the mechanical (stress-strain) properties of the nanocomposites with regard to the pure polymer. The nanocomposite thin films with lower hard segment content (HSC) displayed decreased stiffness and tensile and increased elongation at break in comparison to the nanocomposites with higher HSC. There was no distinctive influence of nanoparticles on the glass transition temperatures of soft segments. Nanosilica significantly affected the melting behavior of the hard phase only in samples with higher HSC.  相似文献   

11.
Morphology and tensile properties of model thermoplastic polyurethanes (TPUs) containing polyisobutylene (PIB) or poly(tetramethylene oxide) (PTMO) based soft segment and 4,4‐methylene bis(phenyl isocyanate) (MDI) and 1,4‐butanediol (BDO) based monodisperse hard segments (HSs), consisting of exactly two to four MDI units extended by BDO, were investigated. Using FT‐IR spectroscopy, increased hydrogen bonded C?O fraction was observed in model TPUs as the HS size increased. The hydrogen bonded C?O fraction was higher in PIB based TPUs compared with PTMO based TPUs, indicating higher phase separation in PIB based TPUs. The morphology of TPUs was investigated using AFM phase imaging, which showed ribbon‐like or interconnected hard domains in PTMO based model TPUs and randomly dispersed hard domains in PIB based model TPUs. SAXS revealed that the degree of phase separation in the model TPUs was higher than in their polydisperse analogues. Domain spacing as well as interfacial thickness increased with the increasing HS size, and both values were higher in PTMO based TPUs. The tensile analysis indicated that model TPUs exhibited higher modulus and slightly higher elongation compared with their polydisperse analogues. Only in PTMO based model TPUs, strain induced crystallization was observed above 300% elongation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2485–2493  相似文献   

12.
A novel macrodiol based on mixed silicone and carbonate chemistries was synthesized and used as a soft segment precursor in the synthesis of two series of segmented polyurethane (PU) copolymers varying in hard segment content and soft segment molecular weight. The hard segments in these copolymers were derived from 4,4‐methylene diphenyl diisocyanate and 1,4‐butane diol. The phase transitions, microphase separation behavior, and mechanical properties of the copolymers were investigated using a variety of experimental methods. When compared with segmented PU copolymers having predominately poly(dimethyl siloxane) soft segments, these siloxane–carbonate soft segment copolymers exhibit enhanced intersegment mixing, and consequently relatively low mechanical modulus. With relatively low modulus and siloxane units in the soft phase, the siloxane–carbonate PUs have potential for use in cardiac and orthopedic biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
单组分聚氨酯清漆的制备与性能研究   总被引:1,自引:0,他引:1  
不同的聚碳酸酯二元醇、聚四亚甲基醚二醇(PTMG)与二苯甲烷二异氰酸酯(MDI)、小分子二元醇反应,制得聚醚、聚碳酸酯型聚氨酯清漆。通过红外光谱分析结合其机械力学性能、耐水性等的测试结果,探讨聚碳酸酯型聚氨酯清漆的结构对形态和性能的影响。结果表明:随着硬段含量的增加,树脂涂膜的微相分离程度增加,机械性能提高;组分摩尔比例相同时,软段分子量的降低有利于提高树脂的软硬段相容性,增加树脂涂膜的物理机械性能;组分摩尔比例相同时聚酯型聚氨酯树脂的微相分离程度低于聚醚型聚氨酯树脂;MDI基溶剂型聚氨酯树脂的物理机械性能较好。  相似文献   

14.
Two series of segmented poly(ester‐urethane)s were synthesized from bacterial poly[(R)‐3‐hydroxybutyrate]‐diol (PHB‐diol), as hard segments, and either poly(ε‐caprolactone)‐diol (PCL‐diol) or poly(butylene adipate)‐diol (PBA‐diol), as soft segments, using 1,6‐hexamethylene diisocyanate as a chain extender. The hard‐segment content varied from 0 to 50 wt.‐%. These materials were characterized using 1H NMR spectroscopy and GPC. The polymers obtained were investigated calorimetrically and dielectrically. DSC showed that the Tg of either the PCL or PBA soft segments are shifted to higher temperatures with increasing PHB hard‐segment content, revealing that either the PCL or PBA are mixed with small amounts of PHB in the amorphous domains. The results also showed that the crystallization of soft or hard segments was physically constrained by the microstructure of the other crystalline phase, which results in a decrease in the degree of crystallinity of either the soft or hard segments upon increase of the other component. The dielectric spectra of poly(ester‐urethane)s, based on PCL and PHB, showed two primary relaxation processes, designated as αS and αH, which correspond to glass–rubber transitions of PCL soft and PHB hard segments, respectively. Whereas in the case of other poly(ester‐urethane)s, derived from PBA and PHB, only one relaxation process was observed, which broadens and shifts to higher temperature with increasing PHB hard‐segment content. It was concluded from these results that our investigated materials exhibit micro‐phase separation of the hard and soft segments in the amorphous domains.  相似文献   

15.
Shape memory polyurethanes (SMPUs) were synthesized by 4,4′-diphenylmethane diisocyanate (MDI), hexane-1,6-diol (HD), polypropylene glycol (PPG), and recycled polyvinyl butyral (PVB). Dynamic mechanical analysis, differential scanning calorimetry and Fourier transformation infrared attenuated total reflection spectroscopy was used to characterize the poly (vinylbutyral-urethanes). Micro-phase domain separation of hard and soft segments and phase inversion were investigated. Increasing the hard segment content, i.e., average hard segment molecular weight, leads to an increase in the degree of micro-phase separation, hard domain order and crystallinity. The crystalline hard segment structures combined with the elastic nature of soft segment matrix provide enough physical and chemical crosslinks to have shape memory effect.  相似文献   

16.
Three series of polyurethanes, based on three polyols, diphenylmethane diisocyanate (MDI), and three chain extenders were synthesized. Polypropylene glycol (PPG) soft-segment length (MW 1000, 2000, and 3000), soft-segment concentration (30%, 50%, and 70%), and the type of chain extender (ethylene glycol, butane diol, and hexane diol) were varied and their effect on the amount of phase separation studied. Methods for assessing phase separation quantitatively, based on shifts of the glass transition temperature Tg and the enthalpy jump at the glass transition were tested. It was shown that they give incorrect results, especially with PPG 1000 as the soft segment. Dependence of the soft segment Tg on the polyol length was explained by the “network effect.” True phase mixing was found only with PPG 1000 series at low soft-segment concentration, whereas, no clear indication of the phase mixing with PPG 2000 and PPG 3000 based polyurethanes was observed.  相似文献   

17.
A series of segmented polyurea urethane and polyurea block copolymers based on a hexane diisocyanate (HDI) modified aminopropyl terminated polydimethylsiloxane soft segment was synthesized. The hard segments consisted of 4,4′-methylene diphenylene diisocyanate (MDI) which was chain extended with 1,4-butanediol (BD), N-methyldiethanolamine (MDEA), or ethylene diamine. Zwitterionomers were prepared by quaternizing the tertiary amine of the MDEA extended material with γ-propane sultone. The effect of chemical structure on the extent of phase separation and physical properties was studied using a variety of techniques including thermal analysis, dynamic mechanical spectroscopy, tensile testing, and small-angle x-ray scattering. It was observed that the compatibility between the nonpolar polydimethylsiloxane soft segments and the polar urethane hard segments was improved by inserting HDI linkages into the polydimethylsiloxane soft segments. The aggregation of hard segments was enhanced by increasing hard-segment content or by the introduction of ionic functionality. The tensile strength and modulus of these materials was higher than those of polyurethanes containing soft segments based on polydimethylsiloxane and its derivatives.  相似文献   

18.
The effects of thermal annealing on the viscoelastic properties and morphology of films prepared from bimodal latex blends containing equal weight fractions of soft and hard latex particles with controlled sizes were investigated. The thermal and viscoelastic properties of as‐dried and annealed samples were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). Throughout the thermal annealing, the latex blend morphologies were also followed with atomic force microscopy and transmission electron microscopy (TEM). A particulate morphology, consisting of hard particles evenly dispersed in a continuous soft phase, was observed in the TEM micrographs of the as‐dried latex blends and resulted in an enhancement of the mechanical film properties at temperatures between the α relaxations of the soft and hard phases in the DMA thermograms. As soon as the thermal annealing involved temperatures higher than the glass‐transition temperature of the hard phase, the hard particles progressively lost their initial spherical shape and formed a more or less continuous phase in the latex blends. This induced coalescence of the hard particles was confirmed by the association of the experimental viscoelastic data with theoretical predictions, based on self‐consistent mechanical models, which were performed by the consideration of either a particulate or cocontinuous morphology for the bimodal latex blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2289–2306, 2005  相似文献   

19.
A series of polyurethane block copolymers based on hydroxybutyl terminated poly(chloropropylmethyl-dimethylsiloxane) and poly(tetramethylene oxide) soft segments of molecular weights 2100 and 2000, respectively, were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) that was chain extended with either 1,4-butanediol (BD) or N-methyldiethanolamine (MDEA). The materials chain extended with MDEA were ionized using 1,3-propane sultone. The weight fraction of the hard segments was in the range 0.30–0.45. The effect of mixed soft segments, chain extenders, and zwitterionization on the extent of phase separation and physical properties was studied by utilizing differential scanning calorimetry and dynamic mechanical, stress-strain, and Fourier Transform Infrared spectroscopy experiments. All of these short segment block copolymers showed nearly complete phase separation. The zwitterionomer materials exhibited ionic aggregation within the hard domains. Although hard segment crystallinity or ionic aggregation did not affect the morphology, hard domain cohesion was important in determining the tensile and viscoelastic properties of these elastomers.  相似文献   

20.
In general, segmented polyurethane elastomers are prepared by reacting an isocyanate-capped polyol prepolymer with a short-chain diol chain extender, yielding an elastomer with hard segments of uniform size. However, the hard segment size will not be uniform if the polyurethane polymer is prepared by forming the hard segment first, followed by soft segment formation. Because the mechanical properties of polyurethane elastomers depend on the relative ratio of the hard to soft segments as well as the effectiveness of the hard segment as a physical crosslinker, the control of the size distribution of the hard segment is a key factor in designing polyurethane elastomers. It was found that reaction conditions can affect the size distribution of hard segments derived from an aliphatic diisocyanate with differential reactivity between the two isocyanate groups. Lower reaction temperatures and simultaneous mixing of all reactants gave the preferred size distribution of hard segments. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号