首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic nitration of phenol and m-cresol catalyzed by horseradish peroxidase was studied in the presence of H2O2 and NaNO2. The results showed that the nitration products of phenol were 2-nitro and 4-nitrophenols. There was also a small amount of by-products of hydroquinone and catechol. The influences of various reaction parameters, including pH, organic solvent type, and concentrations of NaNO2 and H2O2, on the nitration products were investigated. The yields of 4-nitrophenol and 2-nitrophenol were 14% and 12%, respectively. The nitration products of m-cresol were 4-nitro-m-cresol and 6-nitro-m-cresol, and the yields of 4-nitro-m-cresol and 6-nitro-m-cresol were 19% and 30%, respectively.  相似文献   

2.
A micellar electrokinetic chromatographic method and a high-performance liquid chromatographic method are proposed for the separation and determination of a mixture of 12 nitrobenzenes and their reduction products, namely 4-nitro-1,2-phenylenediamine, 4-nitro-1,3-phenylenediamine, 2-nitro-1,4-phenylenediamine, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 4-amino-2-nitrophenol, 2-amino-5-nitrophenol, 2-amino-4-nitrophenol, 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol. A solution of 50 mM sodium dodecyl sulfate and 10% ethanol in 23 mM sodium borate buffer was used as the electrophoretic medium. Good resolution could be obtained by the addition of tetrahydrofuran to the liquid chromatographic mobile phase. The retention and migration behavior of the nitrobenzenes are discussed.  相似文献   

3.
Monodisperse colloidal silver nanospheres were synthesized by the reaction of silver nitrate, hydroxylammonium hydrosulphate (NH2OH)2 · H2SO4 and sodium hydroxide in the presence of gelatin as stabilizer. Colloidal nanospheres were characterized by UV-vis absorption spectroscopy, transmission electron microscopy, X-ray diffraction and dynamic light scattering. X-ray diffraction data confirmed that the silver nanospheres were crystalline with face-centered-cubic structure. Transmission electron microscopy analysis revealed the formation of homogeneously distributed silver nanoparticles of spherical morphology and size of the nanoparticles was in the range of 0.7–5.2 nm. Silver nanospheres were stable for more than two months when stored at ambient temperature. Size and size distribution were studied by varying pH, reaction temperature, silver ion concentration in feed solution, concentration of reducing agent and concentration of the stabilizing agent. Catalytic activity of silver nanospheres was tested for the reduction reaction of nitro compounds in sodium borohydride solution. Monodisperse silver nanospheres showed excellent catalytic activity towards the reduction of aromatic nitro compounds. The reduction rate of aromatic nitro compounds had been observed to follow the sequence 4-nitrophenol > 2-nitrophenol > 3-nitrophenol.  相似文献   

4.
Diels-Alder cycloaddition reactions at the bay regions of bisanthene (1) with dienophiles such as 1,4-naphthoquinone have been investigated. The products were submitted to nucleophilic addition followed by reductive aromatization reactions to afford the laterally extended bisanthene derivatives 2 and 3. Attempted synthesis of a larger expanded bisanthene 4 revealed an unexpected hydrogenation reaction at the last reductive aromatization step. Unusual Michael addition was observed on quinone 14, which was obtained by Diels-Alder reaction between 1 and 1,4-anthraquinone. Compounds 1-3 exhibited near-infrared (NIR) absorption and emission with high-to-moderate fluorescent quantum yields. Their structures and absorption spectra were studied by density function theory and non-planar twisted structures were calculated for 2 and 3. All compounds showed amphoteric redox behavior with multiple oxidation/reduction waves. Oxidative titration with SbCl(5) gave stable radical cations, and the process was followed by UV/Vis/NIR spectroscopic measurements. Their photostability was measured and correlated to their different geometries and electronic structures.  相似文献   

5.
The aqueous phase nitration of benzoic acid and phenol was investigated via on-line capillary electrophoresis (CE). The presence of nitrated benzoic acid and phenol was supported through appearance of corresponding molecular ion peaks in ESI-MS measurements, and speciation of the nitrated isomers is achieved via the on-line CE method. The nitrated isomers produced in both reactions were successfully separated in <4?min by addition of 15?mM β-cyclodextrin to the electrophoresis buffer. Sequential separations (on-line analysis) allowed the reaction kinetics to be described. For benzoic acid, reaction yields were low (2–3%) however, results suggest both 3- and 2-nitrobenzoic acid form in a 1–1.4 concentration ratio. In addition, 3-hydroxybenzoic acid also forms in significant quantity under our reaction conditions. For the nitration of phenol, the reaction occurred more rapidly with observed yields between ≈10–30% for individual isomers. The yield of 2-nitrophenol was higher than 4-nitrophenol by a ratio of ≈?1.7–2, but 3-nitrophenol was not detected. For both reactions, nitrated and hydroxylated aromatics were the major products and formation of higher molecular weight oligomers was not observed.  相似文献   

6.
Under mild and neutral conditions, reductive coupling–cyclization of chalcones was promoted by samarium metal with an activator in DMF to afford products in good to excellent yields. The reaction is regioselective over the competitive carbon–carbon double-bond reduction and stereocontrolled.  相似文献   

7.
3-n-Pentadecylphenol (hydrogenated cardanol) and its derivative 5-n-pentadecyl-2-tert-butylphenol can be nitrated using nitric acid in acetonitrile or methanol to give mono, di or trinitro products. 5-n-Pentadecyl-2-nitrophenol undergoes reductive carbonylation to give a benzoxazole-2-one derivative. An efficient catalytic oxidation reaction in the presence of MeReO3 has also been studied.  相似文献   

8.
Chemical transformations of 3-oxolup-20(29)-en-28-al in oxidation, reduction, reductive amination, aldol crotonic condensation, cyclopropanation, Grignard, and Wittig reactions were investigated. The structure of reaction products was established by X-ray diffraction (XRD) analysis.  相似文献   

9.
Results of the reaction of alkyl halides with lanthanum metal have been shown. The reduction of alkyl iodide with 1/3 equiv of lanthanum metal efficiently proceeded to give the corresponding reductive dimerized products along with the formation of reduction and dehydroiodination products. In the case of alkyl bromides and chlorides, the reaction did not proceed under the same reaction conditions as that of alkyl iodides; however, the reaction was dramatically promoted by the addition of a catalytic amount of iodine. A reaction pathway including alkyl radicals was suggested.  相似文献   

10.
We describe a simple and sensitive voltammetric method for the simultaneous determination of 2-nitrophenol and 4-nitrophenol. It is based on the use of an acetylene black paste electrode modified with a graphene-chitosan composite film (denoted as Gr-Chit/ABPE). The reduction peak currents of 2-nitrophenol (at ?252 mV) and of 4-nitrophenol (at ?340 mV) in pH 1.0 solution increase significantly at the Gr-Chit/ABPE in comparison to a bare ABPE. Factors affecting sensitivity were optimized and a linear relationship is found between peak current and the concentrations of 2-nitrophenol (in the 0.4 μM to 80 μM range) and for 4-nitrophenol (in the 0.1 μM to 80 μM range). The detection limits (at an SNR of 3 and after a 30-s accumulation time) are 200 nM for 2-nitrophenol and 80 nM for 4-nitrophenol, respectively. The modified electrode was successfully applied to the direct and parallel determination of 2-nitrophenol and 4-nitrophenol in spiked water samples.
Figure
Graphene-chitosan nanocomposite was prepared by a chemical route. The as-prepared dispersion was immobilized on an acetylene black paste electrode by drop-coating method. This sensor showed excellent analytical performance for the simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol.  相似文献   

11.
The immobilization of gold nanoparticles in anion exchange resin and their quantitative retrieval by means of a cationic surfactant, cetylpyridinium chloride, is studied. The resin-bound gold nanoparticles (R-Au) have been used successfully as a solid-phase catalyst for the reduction of 4-nitrophenol by sodium borohydride. At the end of the reaction, the solid matrix remains activated and separated from the product. The recycling of catalyst particles after the quantitative reduction of 4-nitrophenol and the recovery of gold nanoparticles with unaffected particle morphology from the resin-bound gold nanoparticle entity have been reported.  相似文献   

12.
Natural and engineered nitroreductases have rarely supported full reduction of nitroaromatics to their amine products, and more typically, transformations are limited to formation of the hydroxylamine intermediates. Efficient use of these enzymes also requires a regenerating system for NAD(P)H to avoid the costs associated with this natural reductant. Iodotyrosine deiodinase is a member of the same structural superfamily as many nitroreductases but does not directly consume reducing equivalents from NAD(P)H, nor demonstrate nitroreductase activity. However, exchange of its flavin cofactor with a 5‐deazaflavin analogue dramatically suppresses its native deiodinase activity and leads to significant nitroreductase activity that supports full reduction to an amine product in the presence of the convenient and inexpensive NaBH4.  相似文献   

13.
双子表面活性剂由于其特殊的两亲结构可以作为纳米金颗粒(AuNPs)的表面稳定剂,但双子表面活性剂结构中的连接基团对AuNPs的粒径大小及稳定性有显著影响。本文制备了16-n-16(n=2,3,4和6)型双子表面活性剂稳定的金纳米溶胶,考察了体系pH对AuNPs稳定性的影响,并测试了其对4-硝基苯酚加氢还原体系的催化效果。结果表明,16-4-16和16-3-16对AuNPs的稳定性效果较好,所制备的AuNPs中,16-3-16-AuNPs在不同pH的环境中稳定性最好,而16-4-16-AuNPs在4-硝基苯酚加氢还原反应中的催化活性最佳。  相似文献   

14.
Conversion of nitroarenes to aminoarenes has attracted great attention in pharmaceutical industry, agricultural production, environmental protection and chemical catalysis area. In this work, ficin capped gold nanoclusters(ficin@AuNCs) were prepared for the reduction of 4-nitrophenol to 4-aminophenol.The proposed catalyst was characterized by transmission electron microscopy,dynamic light scattering, fluorescence spectra and UV-Vis spectra. With NaBH4 as the reducing agent, the reduction reaction could carry out completely within 10 min at 25 ℃. Interestingly, the resultant catalyst exliibited size-related properties in the reduction, smaller ficin@AuNCs exhibited liigher catalytic activity. Its present pseudo-first-order rate constant was found to be 2.95×10^-3 s^-1 and the catalytic activation energy was 27.7 kJ/mol. Moreover, ficin@AuNCs-based catalyst displayed good stability, heading to 4-nitrophenol conversion of 98.5%-100.0% after six consecutive cycles. It has shown a great potential in construction of unique catalysts based on AuNCs for reduction reaction.  相似文献   

15.
采用2种高级还原技术(UV/Na2SO3和UV/Na2S2O4)还原降解N-亚硝基二甲胺(NDMA),考察pH值、光照强度、还原剂质量浓度和溶解氧等因素对NDMA还原降解效果的影响,计算还原降解反应过程中的表观反应动力学常数,推断NDMA的还原降解机理.研究结果表明,弱酸性条件下有利于2种高级还原技术对NDMA的还原降...  相似文献   

16.
Gold nanotubes of small particle sizes down to 5 nm and high aspect ratios were synthesized in ion track etched polycarbonate following a rational reaction design. 4-(Dimethylamino)pyridine (DMAP) was employed to adjust the electroless deposition by interfering with the autocatalytically active gold surface. Modification of the pH value and DMAP concentration led to a wide range of products which were characterized by SEM, TEM, and EDS. Filigree nanotubes of 10-15 nm wall thickness and 5.0 ± 2.1 nm grain size were obtained as well as robust and free-standing structures proving homogeneous deposition along the whole template length of 30 μm. Template-supported gold nanotubes were applied in the UV-vis monitored reduction of 4-nitrophenol by sodium borohydride under pseudo-first-order conditions. They proved to be a reliable microfluidic system of excellent catalytic activity coming up with an apparent rate constant of 1.3 × 10(-2) s(-1). Despite a high flow rate, the reaction showed 99% conversion after a distance of just 60 μm.  相似文献   

17.
In this work, multi-wall carbon nanotubes (MWNT) were conveniently dispersed into Nafion-ethanol solution, and the MWNT-Nafion-modified glassy carbon electrode (GCE) was described for the simultaneous determination of 2-nitrophenol and 4-nitrophenol. At pH 4.0 phosphate buffer, the reduction peak currents of 2-nitrophenol (at -0.8 V) and 4-nitrophenol (at -1.0 V) increase significantly at the MWNT-Nafion-modified GCE, in comparison with that at the Nafion-modified GCE and the bare GCE. The experimental parameters, such as solution pH of phosphate buffer, accumulation potential and time, and the amounts of MWNT-Nafion onto the GCE surface, were optimized. The reduction peak currents are linear with the concentration of 2-nitrophenol from 5 x 10(-8) to 1 x 10(-5) mol L(-1) and with that of 4-nitrophenol from 1 x 10(-7) to 1 x 10(-5) mol L(-1). The detection limits after 3-min accumulation are 1 x 10(-8) mol L(-1) for 2-nitrophenol and for 4 x 10(-8) mol L(-1) for 4-nitrophenol. This modified electrode was applied to direct determination of 2-nitrophenol and 4-nitrophenol in lake water samples.  相似文献   

18.
The reductive coupling of 1,3-dimethyhydantoin with benzophenones by TiCl4-Zn in THF gave 4-diarylmethyl-1H-imidazol-2(3H)-ones as four-electron reduced one-to-one coupled products and their dimers as two-to-two coupled products predominantly by controlling the reaction conditions. The reductive coupling of 5-alkyl-1,3-dimethyhydantoins with benzophenones produced 5-alkyl-4-diarylmethyl-1H-imidazol-2(3H)-ones as the sole products irrespective to the reaction conditions. On the other hand, the reductive coupling of 1,3-dimethyhydantoin with cyclic benzophenones selectively 4-arylhydroxymethyl-1H-imidazol-2(3H)-ones as two-electron reduced one-to-one coupled products and they were further reduced to 4-diarylmethyl-1H-imidazol-2(3H)-ones.  相似文献   

19.
The coating of TiO(2) particles (P25) by a nanoporous silica layer was conducted to impart molecular recognitive photocatalytic ability. TiO(2)/nanoporous silica core/shell particles with varied pore diameters of the shell were synthesized by the reaction of P25 with an aqueous mixture of tetraethoxysilane and alkyltrimethylammonium chloride with varied alkyl chain lengths, followed by calcination. The TEM and nitrogen adsorption/desorption isotherms of the products showed that a nanoporous silica shell with a thickness of ca. 2nm and controlled pore diameter (1.2, 1.6, and 2.7 nm) was deposited on the titania particle when surfactants with different alkyl chain lengths (C12, C16 and C22) were used. The water vapor adsorption/desorption isotherms of the core/shell particles revealed that a larger amount of water adsorbed on the core/shell particles when the pore diameter is larger. The (29)Si MAS NMR spectra of the core/shell particles showed that the amount of surface silanol groups was independent of the water vapor adsorption capacity of the products. The possible molecular recognitive photocatalysis on the products was investigated under UV irradiation using two kinds of aqueous mixtures containing different organic compounds with varied sizes and functional groups: a 4-butylphenol, 4-hexylphenol, and 4-nonylphenol mixture and a 2-nitrophenol, 2-nitro-4-phenylphenol, and 4-nitro-2,6-diphenylphenol mixture. It was found that the core/shell particles exhibited selective adsorption-driven molecular recognitive photocatalytic decomposition of 4-nonylphenol and 2-nitrophenol in the two mixtures.  相似文献   

20.
The fabrication of highly active and easily recyclable Pd-based catalyst is meaningful for their practical application.Herein,a Pd-based dip-catalyst(Pd@Pyr-GDY)is fabricated on graphdiyne(Pyr-GDY)grown on copper foam,and applied in the reduction of nitroarenes.Specially,the as-formed Pd@Pyr-GDY shows good catalytic performance toward the reduction of 4-nitrophenol(4-NP)to 4-aminophenol(4-AP)by NaBH4 with a rate constant k value of 3.84 min-1,which is 12-fold higher than that of the commercial Pd/C.More importantly,Pd@Pyr-GDY could be easily and rapidly recovery from the reaction medium and no distinct inactivation was found after six cycles of the reaction.This work presents an easy way to design an efficient and easily recyclable Pd-based catalyst for practical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号