首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell membranes provide a requisite dynamic interface to facilitate communication between the extracellular environment and the intracellular milieu. These membranes contain proteins that span and/or are loosely associated with the lipid bilayer. The organization of lipids and proteins components into membrane micro-domains provides a temporal and spatial signaling platform for communication. Recently, cholesterol and sphingomyelin enriched membrane micro-domains known as lipid rafts have been implicated in cell signaling events. In these studies we have advanced our hypothesis that stimulus dependent rearrangement of cholesterol into and out of membrane rafts provides a unique lipid–mediated regulatory mechanism. Using fluorescent derivatives of cholesterol, we have shown that membrane raft associated cholesterol was altered in response to collagen-induced platelet aggregatory stimulation. Collagen stimulation resulted in a rapid redistribution of cholesterol from the outer to the inner membrane monolayer. The reorganization of the outer membrane monolayer resulted in a concomitant increase in outer monolayer fluidity. These studies are the first to show that membrane cholesterol was released from the exchangeable membrane raft pool in response to physiological stimuli.  相似文献   

2.
The poor uptake of fluorescent probes and therapeutics by mammalian cells is a major concern in biological applications ranging from fluorescence imaging to drug delivery in living cells. Although gaseous molecules such as oxygen and carbon dioxide, hydrophobic substances such as benzene, and small polar but uncharged molecules such as water and ethanol can cross the cell plasma membrane by simple passive diffusion, many synthetic as well as biological molecules require specific membrane transporters and channel proteins that control the traffic of these molecules into and out of the cell. This work reports that the introduction of halogen atoms into a series of fluorescent molecules remarkably enhances their cellular uptake, and that their transport can be increased to more than 95 % by introducing two iodine atoms at appropriate positions. The nature of the fluorophore does not play a major role in the cellular uptake when iodine atoms are present in the molecules, as compounds bearing naphthalimide, coumarin, BODIPY, and pyrene moieties show similar uptakes. Interestingly, the introduction of a maleimide-based fluorophore bearing two hydroxyethylthio moieties allows the molecules to cross the plasma and nuclear membranes, and the presence of iodine atoms further enhances the transport across both membranes. Overall, this study provides a general strategy for enhancing the uptake of organic molecules by mammalian cells.  相似文献   

3.
Specific receptors on the surface of mammalian cells actively internalize cell-impermeable ligands by receptor-mediated endocytosis. To mimic these internalizing receptors, my laboratory is studying artificial cell surface receptors that comprise N-alkyl derivatives of 3beta-cholesterylamine linked to motifs that bind cell-impermeable ligands. When added to living mammalian cells, these synthetic receptors insert into cellular plasma membranes, project ligand-binding small molecules or peptides from the cell surface, and enable living cells to internalize targeted proteins and other cell-impermeable compounds. These artificial receptors mimic their natural counterparts by rapidly cycling between plasma membranes and intracellular endosomes, associating with proposed cholesterol and sphingolipid-rich lipid raft membrane microdomains, and delivering ligands to late endosomes/lysosomes. This "synthetic receptor targeting" strategy is briefly reviewed here and contrasted with other related cellular delivery systems. Potential applications of artificial cell surface receptors as molecular probes, agents for cellular targeting, tools for drug delivery, and methods for ligand depletion are discussed. The construction of synthetic receptors as prosthetic molecules, designed to seamlessly augment the molecular machinery of living cells, represents an exciting new frontier in the fields of bioorganic chemistry and chemical biology.  相似文献   

4.
Bound water is a major component of biological membranes and is required for the structural stability of the lipid bilayer. It has also been postulated that it is involved in water transport, membrane fusion, and mobility of membrane proteins and lipids. We have measured the fluorescence emission of membrane-bound 1-anilino-8-naphthalenesulfonate (ANS) and the infrared spectra of membranes, both as a function of hydration. ANS fluorescence is sensitive to polarity and fluidity of the membrane-aqueous interface, while infrared absorption is sensitive to the hydrogen bonding and vibrational motion of water and membrane proteins and lipids. The fluorescence results provide evidence of increasing rigidity and/or decreasing polarity of the membrane-aqueous interface with removal of water. The membrane infrared spectra show prominent hydration-dependent changes in a number of bands with possible assignments to cholesterol (vinyl CH bend, OH stretch), protein (amide A, II, V), and bound water (OH stretch). Further characterization of the bound water should allow its incorporation into current models of membrane structure and give insight into the role of membrane hydration in cell surface function.  相似文献   

5.
Cell-penetrating peptides and proteins (CPPs) are important tools for the delivery of impermeable molecules into living mammalian cells. To enable these cells to internalize proteins fused to common oligohistidine affinity tags, we synthesized an artificial cell surface receptor comprising an N-alkyl derivative of 3beta-cholesterylamine linked to the metal chelator nitrilotriacetic acid (NTA). This synthetic receptor inserts into cellular plasma membranes, projects NTA headgroups from the cell surface, and rapidly cycles between the plasma membrane and intracellular endosomes. Jurkat lymphocytes treated with the synthetic receptor (10 microM) for 1 h displayed approximately 8,400,000 [corrected]NTA groups on the cell surface. Subsequent addition of the green fluorescent protein AcGFP fused to hexahistidine or decahistidine peptides (3 microM) and Ni(OAc)(2) (100 microM) enhanced the endocytosis of AcGFP by 150-fold (hexahistidine fusion protein) or 600-fold (decahistidine fusion protein) within 4 h at 37 degrees C. No adverse effects on cellular proliferation or morphology were observed under these conditions. By enabling common oligohistidine affinity tags to function as cell-penetrating peptides, this metal-chelating cell surface receptor provides a useful tool for studies of cellular biology [corrected]  相似文献   

6.
Intracellular membrane fusion is coordinated by membrane-anchored fusion proteins. The cytosolic domains of these proteins form a specific complex that pulls the membranes into close proximity. Although some results indicate that membrane merger can be accomplished solely on the basis of proximity, others emphasize the importance of bilayer stress exerted by transmembrane peptides. In a reductionist approach, we recently introduced a fusion machinery built from cholesterol-modified DNA zippers to mimic fusion protein function. Aiming to further optimize DNA-mediated fusion, we varied in this work length and number of DNA strands and used either one or two cholesterol groups for membrane anchoring of DNA. The results reveal that the use of two cholesterol anchors is essential to prevent cDNA strands from shuttling to the same membrane, which leads to vesicle release instead of membrane merger. A surface coverage of 6-13 DNA strands was a precondition for efficient fusion, whereas fusion was insensitive to DNA length within the tested range. Besides lipid mixing, we also demonstrate DNA-induced content mixing of large unilamellar vesicles composed of the most abundant cellular lipids phosphatidylcholine, phosphatidylethanolamine, cholesterol, and sphingomyelin. Taken together, DNA-mediated fusion emerges as a promising tool for the functionalization of artificial and biological membranes and may help to dissect the functional role of fusion proteins.  相似文献   

7.
Organometallic compounds are widely spread in the human environment sometimes, causing a substantial health risk. Their amphiphilic character enables them to intercalate and penetrate cell membranes, potentially affecting various vital cell functions. Compound adsorption onto the membrane depends on the compound properties, as well as on the membrane composition and state. When adsorbing onto the lipidic surface, phenyltins localize at areas where lipid bilayer organization is compatible with compound spatial requirements. The lipid bilayer is a dynamic and laterally nonuniform structure with complex local and global architecture correlated with a variety of cell functions. The selective binding of a toxic compound to selected membrane areas may, therefore, interfere with some types of cellular process. We present experimental results concerning phenyltin adsorption onto the lipid bilayer surface measured with the fluorescent probe fluorescein‐PE. Model lipid bilayers were formed from lipid mixtures mimicking various plasma membrane regions. The adsorption of Ph3SnCl and P2SnCl2 onto the phosphatidylcholine–cholesterol bilayer was qualitatively different from sphingomyelin–cholesterol. The results presented indicate that phenyltins are likely to accumulate in areas containing phosphatidylcholine, outside of lipid rafts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Lipids of the plasma membrane participate in a variety of biological processes, and methods to probe their function and cellular location are essential to understanding biochemical mechanisms. Previous reports have established that phosphocholine‐containing lipids can be labeled by alkyne groups through metabolic incorporation. Herein, we have tested alkyne, azide and ketone‐containing derivatives of choline as metabolic labels of choline‐containing lipids in cells. We also show that 17‐octadecynoic acid can be used as a complementary metabolic label for lipid acyl chains. We provide methods for the synthesis of cyanine‐based dyes that are reactive with alkyne, azide and ketone metabolic labels. Using an improved method for fluorophore conjugation to azide or alkyne‐modified lipids by Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC), we apply this methodology in cells. Lipid‐labeled cell membranes were then interrogated using flow cytometry and fluorescence microscopy. Furthermore, we explored the utility of this labeling strategy for use in live cell experiments. We demonstrate measurements of lipid dynamics (lateral mobility) by fluorescence photobleaching recovery (FPR). In addition, we show that adhesion of cells to specific surfaces can be accomplished by chemically linking membrane lipids to a functionalized surface. The strategies described provide robust methods for introducing bioorthogonal labels into native lipids.  相似文献   

9.
A wide range of cellular functions are thought to be regulated not only by the activity of membrane proteins, but also by the local membrane organization, including domains of specific lipid composition. Thus, molecules and drugs targeting and disrupting this lipid pattern, particularly of the plasma membrane, will not only help to investigate the role of membrane domains in cell biology, but might also be interesting candidates for therapy. We have identified three 4-substituted cholesterol derivatives that are able to induce a domain-disrupting effect in model membranes. When applied to giant unilamellar vesicles displaying liquid-ordered-liquid-disordered phase coexistence, extensive reorganization of the membrane can be observed, such as the budding of membrane tubules or changes in the geometry of the domains, to the point of complete abolition of phase separation. In this case, the resulting membranes display a fluidity intermediate between those of liquid-disordered and liquid-ordered phases.  相似文献   

10.
The 3alpha-hydroxyl group is a characteristic structural element of all membrane sterol molecules, while the 3-ketone group is more typically found in steroid hormones. In this work, we investigate the effect of substituting the hydroxyl group in cholesterol with the ketone group to produce ketosterone. Extensive atomistic molecular dynamics simulations of saturated lipid membranes with either cholesterol or ketosterone show that, like cholesterol, ketosterone increases membrane order and induces condensation. However, the effect of ketosterone on membrane properties is considerably weaker than that of cholesterol. This is largely due to the unstable positioning of ketosterone at the membrane-water interface, which gives rise to a small but significant number of flip-flop transitions, where ketosterone is exchanged between membrane leaflets. This is remarkable, as flip-flop motions of sterol molecules have not been previously reported in analogous lipid bilayer simulations. In the same context, ketosterone is found to be more tilted with respect to the membrane normal than cholesterol. The atomic level mechanism responsible for the increase of the steroid tilt and the promotion of flip-flops is the decrease in polar interactions at the membrane-water interface. Interactions between lipids or water and the ketone group are found to be weaker than in the case of the hydroxyl group, which allows ketosterone to penetrate through the hydrocarbon region of a membrane.  相似文献   

11.
We studied the peptide-induced membrane fusion process between small unilamellar vesicles (SUVs) and supported planar bilayers (SPBs) with the aim of developing a method for incorporating membrane components into SPBs. As fusogenic peptides, two analogues of the N-terminal region of an influenza membrane fusion protein hemaggulutinin, anionic E5 and cationic K5, were synthesized, and the membrane fusion was investigated using SPB and SUVs composed of phosphatidylcholine from egg yolk (EggPC). We directly visualized the process of lipid transfer from SUVs to SPB by total internal reflection fluorescence (TIRF) microscopy. The transfer of fluorescent lipids was effectively induced only by the combination of two peptides. The TIRF microscopy observations of single SUV fusion events also revealed that lipid membranes from SUV could completely fuse into the SPB. However, the presence of single peptide (either E5 or K5) rather inhibited the lipid transfer, presumably due to the electrostatic repulsion between SUVs and SPB. The opposite effects induced by the peptides indicate the possibility for a designed application of two peptides as a means to control the membrane fusion spatially and temporally.  相似文献   

12.
Receptors on the surface of mammalian cells promote the uptake of cell-impermeable ligands by receptor-mediated endocytosis. To mimic this process, we synthesized small molecules designed to project anti-dinitrophenyl antibody-binding motifs from the surface of living Jurkat lymphocytes. These synthetic receptors comprise N-alkyl derivatives of 3beta-cholesterylamine as the plasma membrane anchor linked to 2,4-dinitrophenyl (DNP) and structurally similar fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD) headgroups. Insertion of two beta-alanine subunits between a DNP derivative and 3beta-cholesterylamine yielded a receptor that avidly associates with cell surfaces (cellular t(1/2) approximately 20 h). When added to Jurkat cells at 10 microM, this receptor enhanced uptake of an anti-DNP IgG ligand by approximately 200-fold in magnitude and approximately 400-fold in rate within 4 h (ligand internalization t(1/2) approximately 95 min at 37 degrees C). This non-natural receptor mimics many natural receptors by dynamically cycling between plasma membranes and intracellular endosomes (recycling t(1/2) approximately 3 min), targeting of protein ligands to proposed cholesterol and sphingolipid-enriched lipid raft membrane microdomains, and delivery of protein ligands to late endosomes/lysosomes. Quantitative dithionite quenching of fluorescent extracellular NBD headgroups demonstrated that other 3beta-cholesterylamine derivatives bearing fewer beta-alanines in the linker region or N-acyl derivatives of 3beta-cholesterylamine were less effective receptors due to more extensive trafficking to internal membranes. Synthetic cell surface receptors have potential applications as cellular probes, tools for drug delivery, and methods to deplete therapeutically important extracellular ligands.  相似文献   

13.
《Soft Materials》2013,11(2-3):85-108
Abstract

Liposomes containing rigid and bulky lipid molecules such as sterols and pyrene‐labeled lipids can exhibit biphasic changes in membrane properties at several specific mole fractions predicted by the theory of lipid regular distributions (e.g., superlattices) in the plane of the membrane. This phenomenon has been observed in two‐component as well as multicomponent liquid‐crystalline liposomal membranes. The extent of sterol regular distribution plays a role in drug partitioning into membranes, the activities of surface‐acting enzymes such as cholesterol oxidase and phospholipase A2, and in free‐radical‐induced sterol oxidation. This article summarizes the original fluorescence studies of lipid superlattices, reviews the recent findings in this area, and discusses the current controversial issues related to lipid regular distributions.  相似文献   

14.
There is evidence indicating that the cellular locus of PDT action by amphiphilic sensitizers are the cellular membranes. The photosensitization process causes oxidative damage to membrane components that can result in the cell's death. However, it was not yet established whether lipid oxidation can cause free passage of molecules through the membrane and, as a result, be the primary cause of the cell's death. In this work, we studied the effect of liposomes' lipid composition on the kinetics of the leakage of three fluorescent dyes, calcein, carboxyfluorescein and DTAF, which were trapped in the intraliposomal aqueous phase, after photosensitization with the photosensitizer deuteroporphyrin. We found that as the degree of fatty acid unsaturation increased, the photosensitized passage of these molecules through the lipid bilayer increased. We also found that the rate of leakage of these molecules was affected by their size and bulkiness as well as by their net electric charge. In liposomes that are composed of a lipid mixture similar to that of natural membranes, the observed passage of molecules through the membrane is slow. Thus, the photodynamic damage to lipids does not appear to be severe enough to be an immediate, primary cause of cell death in biological photosensitization.  相似文献   

15.
Herein we report a semisynthetic method of producing membrane-anchored proteins. Ligation of synthetic lipids with designed anchor structures to proteins was performed using native chemical ligation (NCL) of a C-terminal peptide thioester and an N-terminal cysteine lipid. This strategy mimics the natural glycosylphosphatidylinositol (GPI) linkage found in many natural membrane-associated proteins; however, the synthetic method utilizes simple lipid anchors without glycans. Synthetically lipidated recombinant green fluorescent protein (GFP) was shown to be stably anchored to the membrane, and its lateral fluidity was quantitatively characterized by direct fluorescence imaging in supported membranes. Circumventing the steps of purification from native cell membranes, this methodology facilitates the reconstitution of membrane-associated proteins.  相似文献   

16.
Membrane domains contribute important structural and functional attributes to biological membranes. We describe the heterogeneous nanoscale distribution of lipid molecules within microscale membrane domains in multicomponent lipid bilayers composed of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and cholesterol (chol). The lipids were labeled with the fluorescent lipid analogues Bodipy-PC and DiI-C20:0 to identify the distribution of individual membrane components. We used a near-field scanning optical microscope (NSOM) at room temperature to identify the nanoscale structures in the membrane. Simultaneous multicolor NSOM imaging at the emission maxima of the fluorescent analogues revealed a patchy distribution of Bodipy-PC and DiI-C20:0 indicative of phase separations in the bilayer. In a cholesterol-free system (DPPC/DLPC = 1:1), NSOM images proved that the two phosphatidylcholine molecules can coexist in domains at the micrometer level but form nanoscopic patches within the domains; DPPC occurs at the edge of the domains, whereas DLPC is present throughout the domains. In the presence of cholesterol (DPPC/DLPC = 7:3, chol = 18.9%), the two lipid molecules were more miscible but incomplete phase separations also occurred. The average domain sizes were 140-200 nm, well below the resolution capabilities of diffraction-limited light microscopy techniques; the domains were unresolvable by confocal microscopy. Our high-resolution NSOM studies of membrane domain behavior provide a better understanding of complex membrane phase phenomena in multicomponent biological membranes.  相似文献   

17.
An important and characteristic property of a cell membrane is the lateral mobility of protein molecules in the lipid bilayer. This has conventionally been measured by labeling the molecules with fluorescent markers and monitoring their mobility by different fluorescence‐based techniques. However, adding the label to the studied molecule may affect the system, so it is an assumption in almost all experiments that the measured mobility of the biomolecule with its label is the same as that of the unlabeled molecule. However, this assumption is rarely tested due to a lack of suitable methods. In this work, a new technique to perform label‐free diffusivity measurements is developed and used to measure the effect of the label for two common protein–lipid systems: 1) streptavidin (SA) coupled to a supported lipid bilayer (SLB) through biotinylated lipids and 2) the extracellular part of the T‐cell adhesion protein CD2, coupled to an SLB through histidine tags to nickel‐chelating lipids. A measurable (≈12 %) decrease in diffusivity is found for both labeled proteins, even though the molecular mass of the label is almost 100 times smaller than those of the proteins (≈50 kDa). The results illustrate the importance of being able to study different biophysical properties of cell membranes and their mimics without relying on fluorescent labels, especially if fluorescent labeling is difficult or is expected to affect the nature of the intermolecular interactions being studied.  相似文献   

18.
Shao C  Kendall EL  Devoe DL 《Lab on a chip》2012,12(17):3142-3149
Studies of lipid rafts, ordered microdomains of sphingolipids and cholesterol within cell membranes, are essential in probing the relationships between membrane organization and cellular function. While in vitro studies of lipid phase separation are commonly performed using spherical vesicles as model membranes, the utility of these models is limited by a number of factors. Here we present a microfluidic device that supports simultaneous electrical measurements and confocal imaging of on-chip bilayer lipid membranes (BLMs), enabling real-time multi-domain imaging of membrane organization. The chips further support closed microfluidic access to both sides of the membrane, allowing the membrane boundary conditions to be rapidly changed and providing a mechanism for dynamically adjusting membrane curvature through application of a transmembrane pressure gradient. Here we demonstrate the platform through the study of dynamic generation and dissolution of ordered lipid domains as membrane components are transported to and from the supporting annulus containing solvated lipids and cholesterol.  相似文献   

19.
Radiation oxidative damage to plasma membrane and its consequences to cellular radiosensitivity have received increasing attention in the past few years. This review gives a brief account of radiation oxidative damage in model and cellular membranes with particular emphasis on results from our laboratory. Fluorescence and ESR spin probes have been employed to investigate the structural and functional alterations in membranes after y-irradiation. Changes in the lipid bilayer in irradiated unilamellar liposomes prepared from egg yolk lecithin (EYL) were measured by using diphenylhexatriene (DPH) as a probe. The observed increase in DPH polarization and decrease in fluorescence intensity after γ-irradiation of liposomes imply radiation-induced decrease in bilayer fluidity. Inclusion of cholesterol in liposome was found to protect lipids against radiation damage, possibly by modulation of bilayer organization e.g. lipid packing. Measurements on dipalmitoyl phosphatidylcholine (DPPC) liposomes loaded with 6-carboxyfluorescein (CF) showed radiation dose-dependent release of the probe indicating radiation-induced increased permeability. Changes in plasma membrane permeability of thymocytes were monitored by fluorescein diacetate (FDA) and induced intracellular reactive oxygen species (ROS) were determined by 2,7-dichlorodihydro fluorescein diacetate (DCH-FDA). Results suggest a correlation between ROS generation and membrane permeability changes induced by radiation within therapeutic doses (0-10 Gy). It is concluded that increase in membrane permeability was the result of ROS-mediated oxidative reactions, which might trigger processes leading to apoptotic cell death after radiation exposure.  相似文献   

20.
The localization of oncogenic Src and Ras proteins to cellular plasma membranes is critical for the proliferation of specific cancers. In addition to other lipid modifications, these proteins require posttranslational palmitoylation of specific cysteine residues by the enzyme palmitoyl acyltransferase (PAT) in order to be stably anchored at plasma membranes. Hence, the identification of inhibitors of protein palmitoylation has significant potential to define a new class of antitumor agents. However, studies of protein palmitoylation have been hindered by the dynamic and reversible nature of cysteine acylation and the lack of sensitive and convenient assays of PAT activity. To facilitate the rapid identification of compounds that affect protein palmitoylation, we report the solid-phase synthesis of a fluorescent cell-permeable palmitoyl acyltransferase substrate that mimics the N-terminus of Src family proteins. Metabolic radiolabeling and epifluorescence microscopy of Jurkat lymphocytes treated with this Src-mimetic lipopeptide revealed that this compound is palmitoylated intracellularly, which confers localization at cellular plasma membranes. Addition of the palmitoylation inhibitor 2-bromopalmitic acid to substrate-treated cells blocked palmitoylation and diminished substrate-mediated plasma membrane fluorescence. Analysis of inhibition of palmitoylation by flow cytometry revealed that this fluorescent lipopeptide substrate represents a highly sensitive molecular probe of palmitoyl acyltransferase activity that enables unprecedented high-throughput assays of protein palmitoylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号