首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When facing separation problems in ion chromatography, chromatographers often lack guidelines to decide a priori if isocratic elution will give enough separation in a reasonable analysis time or a gradient elution will be required. This situation may be solved by the prediction of retention in gradient elution mode by using isocratic experimental data. This work describes the development of an ion chromatographic gradient elution retention model for fluoride, chloride, nitrite, bromide, nitrate, sulfate and phosphate by using isocratic experimental data. The isocratic elution retention model was developed by applying a polynomial relation between the logarithm of the retention factor and logarithm of the concentration of competing ions; the gradient elution retention model was based on the stepwise numerical integration of the corresponding differential equation. It was shown that the developed gradient elution retention model was not significantly affected by transferring data form isocratic experiment. The root mean squared prediction error for gradient elution retention model was between 0.0863 for fluoride and 0.7027 for bromide proving a very good predictive ability of developed gradient elution retention model.  相似文献   

2.
The conventional approach to the measurement of peak capacity of reserved-phase columns under gradient elution assumes that all peaks have constant peak width, but this assumption can lead to inaccurate measurement of peak capacity. An integration approach employing a series of alkylphenones as model compounds was employed to more accurately measure the peak capacity for small molecule compounds under gradient elution. The base peak width of alkylphenones was plotted against retention time and a peak width function over retention time was established by polynomial regression. The peak capacity was then calculated by integrating the inverse of the peak width function over a gradient window. Compared to the conventional method, the integration method is not based on the assumption of equal peak width, thus providing a more accurate measurement of the peak capacity of reserved-phase columns, especially shorter ones packed with sub-2 μm particles under gradient elution.  相似文献   

3.
Using isocratic retention parameters, the gradient elution retention time for several proteins has been calculated. The gradient retention time calculation is based on fitting the isocratic retention data to an equation of the form: log k' = m log (1/[Ca2+]) + log K and on applying well-established principles of gradient elution. A good correlation between the observed and calculated retention times for several test proteins was obtained at various total gradient times and column flow-rates. Conversely, isocratic retention parameters characterizing protein retention can be calculated from gradient elution retention data. However, even with retention data of high quality, small errors are amplified by the log-log nature of the ion-exchange isocratic retention model employed. Based on the close correlation between predicted and observed gradient retention times, no evidence for protein denaturation resulting from immobilization of the protein at high initial k' values at or near the column inlet was observed.  相似文献   

4.
This paper describes the results of the evaluation of retention dependence on the physicochemical properties of solutes in linear gradient elution by reversed-phase liquid chromatography (RPLC) based on linear solvation energy relationships (LSERs). Retention time data on Inertsil ODS(3) column by linear gradient elution were collected for both acetonitrile-water and methanol-water binary mobile phases under various gradient steepness. Based on the LSERs, the retention times were linearly correlated with the physicochemical properties (size, dipolarity, and hydrogen bond donor-acceptor acidity and basicity) of solutes. As predicted by LSERs, very acceptable linear relationships are observed for both mobile phases. While the magnitudes of the coefficients are modified by the gradient steepness, their signs are consistent with those obtained by isocratic elution. As obtained for isocratic elution, the dominant factors to retention in linear gradient elution of RPLC are the solutes' size and hydrogen bond acceptor basicity. The conclusions of the study allow us to predict retention in chromatographic method development by gradient elution.  相似文献   

5.
单亦初  张玉奎  赵瑞环 《色谱》2002,20(4):289-294
 根据溶质在柱内的迁移规律 ,建立了一种利用线性梯度实验快速获得溶质保留值方程系数 ,然后以串行响应函数为优化指标进行多台阶梯度分离条件优化的方法。与利用等度实验获得保留值方程的方法相比 ,该法可以大大缩短优化时间。通过该方法对芳香胺和衍生化氨基酸样品进行了分离 ,获得了满意的分离度 ,表明该方法的预测精度很好。  相似文献   

6.
A new mathematical treatment concerning the gradient elution in reversed-phase liquid chromatography when the volume fraction psi of an organic modifier in the water-organic mobile phase varies linearly with time is presented. The experimental ln k versus psi curve, where k is the retention factor under isocratic conditions in a binary mobile phase, is subdivided into a finite number of linear portions and the solute gradient retention time tR is calculated by means of an analytical expression arising from the fundamental equation of gradient elution. The validity of the proposed analytical expression and the methodology followed for the calculation of tR was tested using eight catechol-related solutes with mobile phases modified by methanol or acetonitrile. It was found that in all cases the accuracy of the predicted gradient retention times is very satisfactory because it is the same with the accuracy of the retention times predicted under isocratic conditions. Finally, the above method for estimating gradient retention times was used in an optimisation algorithm, which determines the best variation pattern of psi that leads to the optimum separation of a mixture of solutes at different values of the total elution time.  相似文献   

7.
A new numerical emulation algorithm was established to calculate retention parameters in RP-HPLC with several retention times under different linear or nonlinear binary gradient elution conditions and further predict the retention time under any other binary gradient conditions. A program was written according to this algorithm and nine solutes were used to test the program. The prediction results were excellent. The maximum relative error of predicted retention time was less than 0.45%.  相似文献   

8.
One- and multi-variable retention models proposed for isocratic and/or gradient elution in reversed-phase liquid chromatography are critically reviewed. The thermodynamic, exo-thermodynamic or empirical arguments adopted for their derivation are presented and discussed. Their connection to the retention mechanism is also indicated and the assumptions and approximations involved in their derivation are stressed. Special attention is devoted to the fitting performance of the various models and its impact on the final predicted error between experimental and calculated retention times. The possibility of using exo-thermodynamic retention models for prediction under gradient elution is considered from a practical point of view. Finally, the use of statistical weights in the fitting procedure of a retention model and its effect on the calculated elution times as well as the transferability of retention data among isocratic and gradient elution modes are also examined and discussed.  相似文献   

9.
Gradient elution in ion chromatography (IC) offers several advantages: total analysis time can be significantly reduced, overall resolution of a mixture can be increased, peak shape can be improved (less tailing) and effective sensitivity can be increased (because there is little variation in peak shape). More importantly, it provides the maximum resolution per time unit. The aim of this work was the development of a suitable artificial neural network (ANN) gradient elution retention model that can be used in a variety of applications for method development and retention modelling of inorganic anions in IC. Multilayer perceptron ANNs were used to model the retention behaviour of fluoride, chloride, nitrite, sulphate, bromide, nitrate and phosphate in relation to the starting time of gradient elution and the slope of the linear gradient elution curve. The advantage of the developed model is the application of an optimized two-phase training algorithm that enables the researcher to make use of the advantages of first- and second-order training algorithms in one training procedure. This results in better predictive ability, with less time required for the calculations. The number of hidden layer neurons and experimental data points used for the training set were optimized in terms of obtaining a precise and accurate retention model with respect to minimization of unnecessary experimentation and time needed for the calculation procedures. This study shows that developed, ANNs are the method of first choice for retention modelling of inorganic anions in IC.  相似文献   

10.
11.
The transferability of retention data among isocratic and gradient RPLC elution modes is studied. For this purpose, 16 beta-blockers were chromatographed under both isocratic and gradient elution with acetonitrile-water mobile phases. Taking into account the elution mode where the experimental data come from, and the mode where the retention should be predicted, the following combinations are possible: isocratic predictions from (i) isocratic or (ii) gradient experimental designs; and gradient predictions from (iii) isocratic or (iv) gradient data. Each of these possibilities was checked using three retention models that relate the logarithm of the retention factor: (a) linearly and (b) quadratically with the volume fraction of organic solvent, and (c) linearly with a normalised mobile phase polarity parameter. The study was carried out under two different perspectives: a straightforward examination of the prediction errors and the analysis of the uncertainties derived from the variance-covariance matrix of the fitted models. The best combinations of prediction mode and model were: (i)-(b), (ii)-(c), (iii)-(b), and (iv)-(a) or (c).  相似文献   

12.
The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.  相似文献   

13.
The applicability and predictive properties of the linear solvent strength model and two nonlinear retention‐time models, i.e., the quadratic model and the Neue model, were assessed for the separation of small molecules (phenol derivatives), peptides, and intact proteins. Retention‐time measurements were conducted in isocratic mode and gradient mode applying different gradient times and elution‐strength combinations. The quadratic model provided the most accurate retention‐factor predictions for small molecules (average absolute prediction error of 1.5%) and peptides separations (with a prediction error of 2.3%). An advantage of the Neue model is that it can provide accurate predictions based on only three gradient scouting runs, making tedious isocratic retention‐time measurements obsolete. For peptides, the use of gradient scouting runs in combination with the Neue model resulted in better prediction errors (<2.2%) compared to the use of isocratic runs. The applicability of the quadratic model is limited due to a complex combination of error and exponential functions. For protein separations, only a small elution window could be applied, which is due to the strong effect of the content of organic modifier on retention. Hence, the linear retention‐time behavior of intact proteins is well described by the linear solvent strength model. Prediction errors using gradient scouting runs were significantly lower (2.2%) than when using isocratic scouting runs (3.2%).  相似文献   

14.
In reversed-phase liquid chromatography, the retention mechanism of solute has been studied under linearly programmed gradient mobile-phase conditions. The separation of a mixture of four purine compounds (purine, theobromine, theophylline, and caffeine) was considered as a practical case in two binary mobile phase systems, water/methanol and water/acetonitrile. The retention model which describes how the retention factor is related to the mobile-phase composition has been developed in various mathematical forms to predict the retention time in both linear and gradient elutions. For a pulse injection of sample, two important factors, the retention time and the bandwidth of solute, might be computable to predict the elution profiles estimated by the distribution function, such as the Gaussian distribution function. In this work, a prediction method based on the analogue of the retention model was proposed to calculate the bandwidth in linear gradient elutions. Band broadening was caused by the different migration velocities of the front and rear ends of the solute band in a chromatographic column. Therefore, the migration behaviors of the front and rear ends of the solute band were explained with the same retention model which had been used to predict the retention time of solute. For the well retained solutes, theophylline and caffeine, the predicted bandwidth and experimentally obtained bandwidth showed good agreement in both isocratic and gradient elutions.  相似文献   

15.
郝卫强  刘丽娟  沈巧银 《色谱》2021,39(1):10-14
谱带压缩效应是梯度洗脱区别于等度洗脱的重要特征。经典的范德姆特(van Deemter)理论塔板高度方程基于等度洗脱推导得到,因此不能对谱带压缩效应进行描述。在梯度洗脱中,保留因子(k)会随流动相组成(φ)的改变而发生变化,这就使得对梯度洗脱机理的研究要比等度洗脱复杂许多。该文对近10年来谱带压缩效应的研究进展,特别是溶剂强度模型(即描述ln kφ关系的数学表达式)的非线性特征对谱带压缩因子(G)的影响进行了述评,指出为了更好地认识谱带压缩效应需要将这种非线性因素考虑在内。  相似文献   

16.
In this paper we describe how the existing theories to describe retention and peak width in isocratic and gradient-elution liquid chromatography can be expanded to describe the retention behaviour of natural and synthetic repetitive polymers, which feature distributions of molecules with different masses (and often different structures) rather than unambiguous molecular formulas. For polydisperse samples, it is vital that the model accommodates (isocratic) elution of sample components before the onset of a gradient, elution during the gradient, and elution after the completion of the gradient. The expanded models can readily be implemented in standard spreadsheet software, such as Excel. We have created such spreadsheets based on the conventional model for retention in reversed-phase liquid chromatography (RPLC) and on two different models for retention in normal-phase liquid chromatography. The implementation allows an easy visualization of the theoretical concept. Up to three different polymeric series can be entered, with a total of up to 100 peaks being computed and displayed in isocratic or gradient-elution chromatograms. Also visualized are "retention models" (diagrams of isocratic retention vs. composition) and "calibration curves" (retention or elution composition vs. molecular mass or degree of polymerization). The coefficients in the isocratic retention model may be correlated, as has often been observed in RPLC. It is shown that under certain conditions such a correlation corresponds to the existence of so-called critical (isocratic) conditions, at which all the members of a given polymeric series (same composition and end groups, different number of repeat units) show co-elution.  相似文献   

17.
The experimental technique of mass spectrometric tracer pulse chromatography was used to study the effect of the sorption of eluent components by a C18-bonded silica RPLC packing on the retention of a series of test analytes during isocratic and gradient elution experiments. The analytes of interest were a substituted phenol, a substituted nitroaniline, an anti-malaria drug, tetrahydrofuran, and methanol. The eluent used was a mixture of acetonitrile and water. The solutes and isotopically labeled eluent components were injected at fixed time intervals during each gradient run. The mass specific detector allowed the assignment of individual analyte peaks even when there was overlap in the chromatograms from successive injections. Thus, the retention time of each analyte could be determined as a function of gradient slope and initial eluent composition at the time of each injection. Experimental gradient retention time data were then compared with the calculated results from two theoretical models. The first model assumed the velocity of the mobile phase and eluent were equal. The second and most realistic model assumed the velocity of the eluent was less than the velocity of the mobile phase due to the uptake of eluent by the stationary phase. Gradient retention times predicted by the two models were reasonably accurate with the sorption model giving slightly more accurate values. Inverse calculations, i.e., calculation of isocratic retention factors from gradient elution data were also carried out with very similar results. That is, the model allowing for the uptake of eluent was slightly more accurate than the model assuming no eluent-stationary phase interaction.  相似文献   

18.
19.
应用微分方程模拟色谱过程,通过数值计算获得方程的解,从而建立了一种在反相高效液相色谱中梯度洗脱条件下,预测蛋白质等一些具有非线性色谱保留行为的生物大分子保留时间的新方法。利用蛋白质样品牛血清白蛋白和溶菌酶对该法进行实验验证,获得了比较满意的结果。  相似文献   

20.
Chromatographers are cautioned to avoid gradient elution when isocratic elution will do. In this work, we compared the analytical properties of gradient and isocratic separations of a sample which can be done quite readily under isocratic conditions. We found that gradient elution gave a shorter overall analysis with similar resolution of the critical pair compared to isocratic elution without sacrificing repeatability in retention time, peak area and peak height or linearity of the calibration curve. We also obtained acceptable repeatability in peak area/height and linearity of calibrations curves for a sample that required gradient elution using a practical baseline subtraction technique. Based on these results and related work which show that columns can be reequilibrated by flushing with less than two column volumes of the initial eluent, we conclude that many of the reasons given to avoid gradient elution deserve serious reconsideration, especially for those samples which are easily separated isocratically. However, we believe isocratic elution will remain preferable when: (1) the sample contains less than 10 weakly retained components (i.e. the last peak elutes with k' < 5) or (2) the gradient baseline impedes trace analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号