首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
To explore the impact of pest‐control strategy through a fractional derivative, we consider three predator‐prey systems by simple modification of Rosenzweig‐MacArthur model. First, we consider fractional‐order Rosenzweig‐MacArthur model. Allee threshold phenomena into pest population is considered for the second case. Finally, we consider additional food to the predator and harvesting in prey population. The main objective of the present investigation is to observe which model is most suitable for the pest control. To achieve this goal, we perform the local stability analysis of the equilibrium points and observe the basic dynamical properties of all the systems. We observe fractional‐order system has the ability to stabilize Rosenzweig‐MacArthur model with low pest density from oscillatory state. In the numerical simulations, we focus on the bistable regions of the second and third model, and we also observe the effect of the fractional order α throughout the stability region of the system. For the third model, we observe a saddle‐node bifurcation due to the additional food and Allee effect to the pest densities. Also, we numerically plot two parameter bifurcation diagram with respect to the harvesting parameter and fractional order of the system. We finally conclude that fractional‐order Rosenzweig‐MacArthur model and the modified Rosenzweig‐MacArthur model with additional food for the predator and harvested pest population are more suitable models for the pest management.  相似文献   

3.
In this paper, we present a general phase transition model that describes the evolution of vehicular traffic along a one‐lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the free‐flow phase and by a system of 2 conservation laws in the congested phase. The free‐flow phase is described by a one‐dimensional fundamental diagram corresponding to a Newell‐Daganzo type flux. The congestion phase is described by a two‐dimensional fundamental diagram obtained by perturbing a general fundamental flux. In particular, we study the resulting Riemann problems in the case a local point constraint on the flow of the solutions is enforced.  相似文献   

4.
We use a particle method to study a Vlasov‐type equation with local alignment, which was proposed by Sebastien Motsch and Eitan Tadmor [J. Statist. Phys., 141(2011), pp. 923‐947]. For N‐particle system, we study the unconditional flocking behavior for a weighted Motsch‐Tadmor model and a model with a “tail”. When N goes to infinity, global existence and stability (hence uniqueness) of measure valued solutions to the kinetic equation of this model are obtained. We also prove that measure valued solutions converge to a flock. The main tool we use in this paper is Monge‐Kantorovich‐Rubinstein distance.  相似文献   

5.
In this paper,we applied the Painlevé property test on Krook‐Wu model of the nonlinear Boltzmann equation (p = 1). As a result, by using Bäcklund transformation, we obtained three solutions two of them were known earlier, while the third one is new and more general, we have also two reductions one of them is Abel's equation. Also, Lie‐group method is applied to the (p + 1)th Boltzmann equation. The complete Lie algebra of infinitesimal symmetries is established. Three nonequivalent sub‐algebraic of the complete Lie algebra are used to investigate similarity solutions and similarity reductions in the form of nonlinear ordinary equations for (p + 1)th Boltzmann equation; we obtained two general solutions for (p + 1)th Boltzmann equation and new solutions for Krook‐Wu model of Boltzmann equation (p = 1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, we introduce a likelihood‐based estimation method for the stochastic volatility in mean (SVM) model with scale mixtures of normal (SMN) distributions. Our estimation method is based on the fact that the powerful hidden Markov model (HMM) machinery can be applied in order to evaluate an arbitrarily accurate approximation of the likelihood of an SVM model with SMN distributions. Likelihood‐based estimation of the parameters of stochastic volatility models, in general, and SVM models with SMN distributions, in particular, is usually regarded as challenging as the likelihood is a high‐dimensional multiple integral. However, the HMM approximation, which is very easy to implement, makes numerical maximum of the likelihood feasible and leads to simple formulae for forecast distributions, for computing appropriately defined residuals, and for decoding, that is, estimating the volatility of the process. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we consider a system made of n components displayed on a structure (eg, a steel plate). We define a parametric model for the hazard function, which includes covariates and spatial interaction between components. The state (nonfailed or failed) of each component is observed at some inspection times. From these data, we consider the problem of model parameter estimation. To achieve this, we suggest to use the SEM algorithm based on a pseudo‐likelihood function. A definition for the time‐to‐failure of the system is given, generalizing the classical cases. A study based on numerical simulations is provided to illustrate the proposed approach.  相似文献   

8.
In this paper, we focus on a diffuse interface model named by Hele–Shaw–Cahn–Hilliard system, which describes a two‐phase Hele–Shaw flow with matched densities and arbitrary viscosity contrast in a bounded domain. The diffuse interface thickness is measured by ? , and the mobility coefficient (the diffusional Peclet number) is ? α . We will prove rigorously that the global weak solutions of the Hele–Shaw–Cahn–Hilliard system converge to a varifold solution of the sharp interface model as ? →0 in the case of 0≤α  < 1. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this note we analyze a modified mixed finite element method for second‐order elliptic equations in divergence form. As a model we consider the Poisson problem with mixed boundary conditions in a polygonal domain of R 2. The Neumann (essential) condition is imposed here in a weak sense, which yields the introduction of a Lagrange multiplier given by the trace of the solution on the corresponding boundary. This approach allows to handle nonhomogeneous Neumann boundary conditions, theoretically and computationally, in an alternative and usually easier way. Then we utilize the classical Babu?ka‐Brezzi theory to show that the resulting mixed variational formulation is well posed. In addition, we use Raviart‐Thomas spaces to define the associated finite element method and, applying some elliptic regularity results, we prove the stability, unique solvability, and convergence of this discrete scheme, under appropriate assumptions on the mesh sizes. Finally, we provide numerical results illustrating the performance of the algorithm for smooth and singular problems. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 192–210, 2003  相似文献   

10.
The paper deals with the analysis of pair diffusion models in semiconductor technology. The underlying model contains reaction‐drift‐diffusion equations for the mobile point defects and dopant‐defect pairs as well as reaction equations for immobile dopants which are coupled with a non‐linear Poisson equation for the chemical potential of the electrons. For homogeneous structures we present an existence and uniqueness result for strong solutions. Starting with energy estimates we derive further a priori estimates such that fixed point arguments due to Leray–Schauder guarantee the solvability of the model equations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is the third in a series of several works devoted to the asymptotic and spectral analysis of a model of an aircraft wing in a subsonic air flow. This model has been developed in the Flight Systems Research Center of UCLA and is presented in the works by Balakrishnan. The model is governed by a system of two coupled integro‐differential equations and a two‐parameter family of boundary conditions modeling the action of the self‐straining actuators. The differential parts of the above equations form a coupled linear hyperbolic system; the integral parts are of the convolution type. The system of equations of motion is equivalent to a single operator evolution–convolution equation in the energy space. The Laplace transform of the solution of this equation can be represented in terms of the so‐called generalized resolvent operator, which is an operator‐valued function of the spectral parameter. This generalized resolvent operator is a finite‐meromorphic function on the complex plane having the branch cut along the negative real semi‐axis. Its poles are precisely the aeroelastic modes and the residues at these poles are the projectors on the generalized eigenspaces. In the first two papers (see [33, 34]) and in the present one, our main object of interest is the dynamics generator of the differential parts of the system. This generator is a non‐self‐adjoint operator in the energy space with a purely discrete spectrum. In the first paper, we have shown that the spectrum consists of two branches, and have derived their precise spectral asymptotics with respect to the eigenvalue number. In the second paper, we have derived the asymptotical approximations for the mode shapes. Based on the asymptotical results of the first two papers, in the present paper, we (a) prove that the set of the generalized eigenvectors of the aforementioned differential operator is complete in the energy space; (b) construct the set of vectors which is biorthogonal to the set of the generalized eigenvectors in the case when there might be not only eigenvectors but associate vectors as well; and (c) prove that the set of the generalized eigenvectors forms a Riesz basis in the energy space. To prove the main result of the paper, we made use of the Nagy–Foias functional model for non‐self‐adjoint operators. The results of all three papers will be important for the reconstruction of the solution of the original initial‐boundary‐value problem from its Laplace transform in the forthcoming papers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Caching is widely recognized as an effective mechanism for improving the performance of the World Wide Web. One of the key components in engineering the Web caching systems is designing document placement/replacement algorithms for updating the collection of cached documents. The main design objectives of such a policy are the high cache hit ratio, ease of implementation, low complexity and adaptability to the fluctuations in access patterns. These objectives are essentially satisfied by the widely used heuristic called the least‐recently‐used (LRU) cache replacement rule. However, in the context of the independent reference model, the LRU policy can significantly underperform the optimal least‐frequently‐used (LFU) algorithm that, on the other hand, has higher implementation complexity and lower adaptability to changes in access frequencies. To alleviate this problem, we introduce a new LRU‐based rule, termed the persistent‐access‐caching (PAC), which essentially preserves all of the desirable attributes of the LRU scheme. For this new heuristic, under the independent reference model and generalized Zipf's law request probabilities, we prove that, for large cache sizes, its performance is arbitrarily close to the optimal LFU algorithm. Furthermore, this near‐optimality of the PAC algorithm is achieved at the expense of a negligible additional complexity for large cache sizes when compared to the ordinary LRU policy, since the PAC algorithm makes the replacement decisions based on the references collected during the preceding interval of fixed length. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

13.
Jim Propp's rotor–router model is a deterministic analog of a random walk on a graph. Instead of distributing chips randomly, each vertex serves its neighbors in a fixed order. Cooper and Spencer (Comb Probab Comput 15 (2006) 815–822) show a remarkable similarity of both models. If an (almost) arbitrary population of chips is placed on the vertices of a grid ?d and does a simultaneous walk in the Propp model, then at all times and on each vertex, the number of chips on this vertex deviates from the expected number the random walk would have gotten there by at most a constant. This constant is independent of the starting configuration and the order in which each vertex serves its neighbors. This result raises the question if all graphs do have this property. With quite some effort, we are now able to answer this question negatively. For the graph being an infinite k‐ary tree (k ≥ 3), we show that for any deviation D there is an initial configuration of chips such that after running the Propp model for a certain time there is a vertex with at least D more chips than expected in the random walk model. However, to achieve a deviation of D it is necessary that at least exp(Ω(D2)) vertices contribute by being occupied by a number of chips not divisible by k at a certain time. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

14.
In this paper we present a contribution to a classical result of E. Ellentuck in the theory of regressive isols. E. Ellentuck introduced the concept of a hyper‐torre isol, established their existence for regressive isols, and then proved that associated with these isols a special kind of semi‐ring of isols is a model of the true universal‐recursive statements of arithmetic. This result took on an added significance when it was later shown that for regressive isols, the property of being hyper‐torre is equivalent to being hereditarily odd‐even. In this paper we present a simplification to the original proof for establishing that equivalence. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
One of the major challenges associated with the measurement of customer lifetime value is selecting an appropriate model for predicting customer future transactions. Among such models, the Pareto/negative binomial distribution (Pareto/NBD) is the most prevalent in noncontractual relationships characterized by latent customer defections; ie, defections are not observed by the firm when they happen. However, this model and its applications have some shortcomings. Firstly, a methodological shortcoming is that the Pareto/NBD, like all lifetime transaction models based on statistical distributions, assumes that the number of transactions by a customer follows a Poisson distribution. However, many applications have an empirical distribution that does not fit a Poisson model. Secondly, a computational concern is that the implementation of Pareto/NBD model presents some estimation challenges specifically related to the numerous evaluation of the Gaussian hypergeometric function. Finally, the model provides 4 parameters as output, which is insufficient to link the individual purchasing behavior to socio‐demographic information and to predict the behavior of new customers. In this paper, we model a customer's lifetime transactions using the Conway‐Maxwell‐Poisson distribution, which is a generalization of the Poisson distribution, offering more flexibility and a better fit to real‐world discrete data. To estimate parameters, we propose a Markov chain Monte Carlo algorithm, which is easy to implement. Use of this Bayesian paradigm provides individual customer estimates, which help link purchase behavior to socio‐demographic characteristics and an opportunity to target individual customers.  相似文献   

16.
In earlier literature, a version of a classical three‐species food chain model, with modified Holling type IV functional response, is proposed. Results on the global boundedness of solutions to the model system under certain parametric restrictions are derived, and chaotic dynamics is shown. We prove that in fact the model possesses explosive instability, and solutions can explode/blow up in finite time, for certain initial conditions, even under the parametric restrictions of the literature. Furthermore, we derive the Hopf bifurcation criterion, route to chaos, and Turing bifurcation in case of the spatially explicit model. Lastly, we propose, analyze, and simulate a version of the model, incorporating gestation effect, via an appropriate time delay. The delayed model is shown to possess globally bounded solutions, for any initial condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
We propose a simple model for a two‐phase flow with a diffuse interface. The model couples the compressible Navier‐Stokes system governing the evolution of the fluid density and the velocity field with the Allen‐Cahn equation for the order parameter. We show that the model is thermodynamically consistent, in particular, a variant of the relative energy inequality holds. As a corollary, we show the weak‐strong uniqueness principle, meaning any weak solution coincides with the strong solution emanating from the same initial data on the life span of the latter. Such a result plays a crucial role in the analysis of the associated numerical schemes. Finally, we perform the low Mach number limit obtaining the standard incompressible model.  相似文献   

18.
This article deals with the approximation of the bending of a clamped plate, modeled by Reissner‐Mindlin equations. It is known that standard finite element methods applied to this model lead to wrong results when the thickness t is small. Here, we propose a mixed formulation based on the Hellinger‐Reissner principle which is written in terms of the bending moments, the shear stress, the rotations and the transverse displacement. To prove that the resulting variational formulation is well posed, we use the Babu?ka‐Brezzi theory with appropriate t ‐dependent norms. The problem is discretized by standard mixed finite elements without the need of any reduction operator. Error estimates are proved. These estimates have an optimal dependence on the mesh size h and a mild dependence on the plate thickness t. This allows us to conclude that the method is locking‐free. The proposed method yields direct approximation of the bending moments and the shear stress. A local postprocessing leading to H1 ‐type approximations of transverse displacement and rotations is introduced. Moreover, we propose a hybridization procedure, which leads to solving a significantly smaller positive definite system. Finally, we report numerical experiments which allow us to assess the performance of the method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
We analyze a system of reaction–diffusion equations that models quorum‐sensing in a growing biofilm. The model comprises two nonlinear diffusion effects: a porous medium‐type degeneracy and super diffusion. We prove the well‐posedness of the model. In particular, we present for the first time a uniqueness result for this type of problem. Moreover, we illustrate the behavior of model solutions in numerical simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号