首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, a new linearized energy-preserving Crank-Nicolson finite volume element scheme is derived for the improved Boussinesq equation. The fully discrete scheme can be shown to conserve both mass and energy in the discrete setting. It is proved that the scheme is uniquely solvable and convergent with the rate of order two in a discrete L2 norm. At last, a series of numerical experiments on typical improved Boussinesq and Sine–Gordon equations are provided to verify our theoretical results and to show the efficiency and accuracy of the proposed scheme.  相似文献   

2.
In this paper, a semi‐discrete scheme and a fully discrete scheme of the Stokes‐Biot model are proposed, and we analyze the semi‐discrete scheme in detail. First of all, we prove the existence and uniqueness of the semi‐discrete scheme, and a‐priori error estimates are derived. Then, we present the same conclusions for the fully discrete scheme. Finally, under both matching and non‐matching meshes some numerical tests are given to validate the analysis of convergence, which well support the theoretical results.  相似文献   

3.
In this article, numerical solution for the Rosenau-RLW equation in 2D is considered and a conservative Crank–Nicolson finite difference scheme is proposed. Existence of the numerical solutions for the difference scheme has been shown by Browder fixed point theorem. A priori bound and uniqueness as well as conservation of discrete mass and discrete energy for the finite difference solutions are discussed. Unconditional stability and a second-order accuracy on both space and time of the difference scheme are proved. Numerical experiments are given to support our theoretical results.  相似文献   

4.
本文主要研究相场模拟中的Allen-Cahn模型,考虑一维Allen-Cahn方程紧差分方法的数值逼近.建立具有O(∫τ2+h4)精度的全离散紧差分格式,证明在合理的步长比和时间步长的约束下,其数值解满足离散最大化原则,在此基础上,研究了全离散格式的能量稳定性.最后给出数值算例.  相似文献   

5.
In this paper, we consider a three dimensional Ginzburg–Landau type equation with a periodic initial value condition. A fully discrete Galerkin–Fourier spectral approximation scheme is constructed, and then the dynamical properties of the discrete system are analyzed. First, the existence and convergence of global attractors of the discrete system are proved by a priori estimates and error estimates of the discrete solution, and the numerical stability and convergence of the discrete scheme are proved. Furthermore, the long-time convergence and stability of the discrete scheme are proved. *This work was supported by the National Natural Science Foundation of China (No.: 10432010 and 10571010)  相似文献   

6.
膜自由振动的多辛方法   总被引:1,自引:1,他引:0  
基于Hamilton空间体系的多辛理论研究了膜自由振动问题,讨论了构造复合离散多辛格式的方法,并构造了一种典型的9×3点半隐式的多辛复合离散格式,该格式满足多辛守恒律、能量守恒律和动量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

7.
An implicit Euler finite‐volume scheme for a spinorial matrix drift‐diffusion model for semiconductors is analyzed. The model consists of strongly coupled parabolic equations for the electron density matrix or, alternatively, of weakly coupled equations for the charge and spin‐vector densities, coupled to the Poisson equation for the electric potential. The equations are solved in a bounded domain with mixed Dirichlet–Neumann boundary conditions. The charge and spin‐vector fluxes are approximated by a Scharfetter–Gummel discretization. The main features of the numerical scheme are the preservation of nonnegativity and bounds of the densities and the dissipation of the discrete free energy. The existence of a bounded discrete solution and the monotonicity of the discrete free energy are proved. For undoped semiconductor materials, the numerical scheme is unconditionally stable. The fundamental ideas are reformulations using spin‐up and spin‐down densities and certain projections of the spin‐vector density, free energy estimates, and a discrete Moser iteration. Furthermore, numerical simulations of a simple ferromagnetic‐layer field‐effect transistor in two space dimensions are presented. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 819–846, 2016  相似文献   

8.
We propose an integrable discrete model of one‐dimensional soil water infiltration. This model is based on the continuum model by Broadbridge and White, which takes the form of nonlinear convection–diffusion equation with a nonlinear flux boundary condition at the surface. It is transformed to the Burgers equation with a time‐dependent flux term by the hodograph transformation. We construct a discrete model preserving the underlying integrability, which is formulated as the self‐adaptive moving mesh scheme. The discretization is based on linearizability of the Burgers equation to the linear diffusion equation, but the naïve discretization based on the Euler scheme which is often used in the theory of discrete integrable systems does not necessarily give a good numerical scheme. Taking desirable properties of a numerical scheme into account, we propose an alternative discrete model that produces solutions with similar accuracy to direct computation on the original nonlinear equation, but with clear benefits regarding computational cost.  相似文献   

9.
In this paper, a fully discrete finite element scheme with second-order temporal accuracy is proposed for a fluid-fluid interaction model, which consists of two Navier-Stokes equations coupled by a linear interface condition. The proposed fully discrete scheme is a combination of a mixed finite element approximation for spatial discretization, the second-order backward differentiation formula for temporal discretization, the second-order Gear's extrapolation approach for the interface terms and extrapolated treatments in linearization for the nonlinear terms. Moreover, the unconditional stability is established by rigorous analysis and error estimate for the fully discrete scheme is also derived. Finally, some numerical experiments are carried out to verify the theoretical results and illustrate the accuracy and efficiency of the proposed scheme.  相似文献   

10.
该文对求解非线性耦合Schrodinger方程的Sonnier-Christov格式进行了数值分析, 证明了格式关于L2范数的稳定性和二阶收敛性, 运用Brouwer不动点定理证明了差分解的存在唯一性, 给出一个求解非线性差分方程组的迭代算法并证明了算法的收敛性, 最后对双孤立波的碰撞进行了模拟.  相似文献   

11.
In this paper, we propose a discrete duality finite volume (DDFV) scheme for the incompressible quasi‐Newtonian Stokes equation. The DDFV method is based on the use of discrete differential operators which satisfy some duality properties analogous to their continuous counterparts in a discrete sense. The DDFV method has a great ability to handle general geometries and meshes. In addition, every component of the velocity gradient can be reconstructed directly, which makes it suitable to deal with the nonlinear terms in the quasi‐Newtonian Stokes equation. We prove that the proposed DDFV scheme is uniquely solvable and of first‐order convergence in the discrete L2‐norms for the velocity, the strain rate tensor, and the pressure, respectively. Ample numerical tests are provided to highlight the performance of the proposed DDFV scheme and to validate the theoretical error analysis, in particular on locally refined nonconforming and polygonal meshes.  相似文献   

12.
In this paper, an expanded mixed finite element method with lowest order Raviart Thomas elements is developed and analyzed for a class of nonlinear and nonlocal parabolic problems. After obtaining some regularity results for the exact solution, a priori error estimates for the semidiscrete problem are established. Based on a linearized backward Euler method, a complete discrete scheme is proposed and a variant of Brouwer’s fixed point theorem is used to derive an existence of a fully discrete solution. Further, a priori error estimates for the fully discrete scheme are established. Finally, numerical experiments are conducted to confirm our theoretical findings.  相似文献   

13.
A high-order finite difference method for the two-dimensional coupled nonlinear Schrödinger equations is considered. The proposed scheme is proved to preserve the total mass and energy in a discrete sense and the solvability of the scheme is shown by using a fixed point theorem. By converting the scheme in the point-wise form into a matrix–vector form, we use the standard energy method to establish the optimal error estimate of the proposed scheme in the discrete L2-norm. The convergence order is proved to be of a fourth-order in space and a second-order in time, respectively. Finally, some numerical examples are given in order to confirm our theoretical results for the numerical method. The numerical results are compared with exact solutions and other existing method. The comparison between our numerical results and those of Sun and Wangreveals that our method improves the accuracy of space and time directions.  相似文献   

14.
在这项工作中,我们研究了求解非局部体积守恒Allen-Cahn (AC)方程的全离散傅里叶伪谱数值格式的误差估计.该数值格式的时间行军方法基于著名的不变能量平方法(IEQ). 我们证明了所提出的全离散数值方法是唯一可解,无条件能量稳定的,并获得了该方案在空间和时间上的最优误差估计.此外,我们还进行了一些数值检验来验证理论结果.  相似文献   

15.
In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is \(\mathcal {O}(\tau ^{3-\alpha })\). Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when \(\beta \rightarrow +\infty \) solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is \(\mathcal {O}(h)\). In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.  相似文献   

16.
In this paper numerical solutions of mixed hyperbolic problems are computed using a discrete eigenfunctions method combined with an implicit difference scheme. This new numerical technique preserves the qualitative properties of the analytic solution due to the Sturm-Liouville structure of the underlying discrete linear boundary-value problem and has computational stability advantages vs other methods. Illustrative examples are included.  相似文献   

17.
In this work we construct and analyze discrete artificial boundary conditions (ABCs) for different finite difference schemes to solve nonlinear Schrödinger equations. These new discrete boundary conditions are motivated by the continuous ABCs recently obtained by the potential strategy of Szeftel. Since these new nonlinear ABCs are based on the discrete ABCs for the linear problem we first review the well-known results for the linear Schrödinger equation. We present our approach for a couple of finite difference schemes, including the Crank–Nicholson scheme, the Dùran–Sanz-Serna scheme, the DuFort–Frankel method and several split-step (fractional-step) methods such as the Lie splitting, the Strang splitting and the relaxation scheme of Besse. Finally, several numerical tests illustrate the accuracy and stability of our new discrete approach for the considered finite difference schemes.  相似文献   

18.
By employing $EQ_1^{rot}$ nonconforming finite element, the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes. Comparing with the multi-term time-fractional sub-diffusion equation or diffusion-wave equation, the mixed case contains a special time-space coupled derivative, which leads to many difficulties in numerical analysis. Firstly, a fully discrete scheme is established by using nonconforming finite element method (FEM) in spatial direction and L1 approximation coupled with Crank-Nicolson (L1-CN) scheme in temporal direction. Furthermore, the fully discrete scheme is proved to be unconditional stable. Besides, convergence and superclose results are derived by using the properties of $EQ_1^{rot}$ nonconforming finite element. What's more, the global superconvergence is obtained via the interpolation postprocessing technique. Finally, several numerical results are provided to demonstrate the theoretical analysis on anisotropic meshes.  相似文献   

19.
In this paper, we propose an efficient numerical scheme for magnetohydrodynamics (MHD) equations. This scheme is based on a second order backward difference formula for time derivative terms, extrapolated treatments in linearization for nonlinear terms. Meanwhile, the mixed finite element method is used for spatial discretization. We present that the scheme is unconditionally convergent and energy stable with second order accuracy with respect to time step. The optimal L 2 and H 1 fully discrete error estimates for velocity, magnetic variable and pressure are also demonstrated. A series of numerical tests are carried out to confirm our theoretical results. In addition, the numerical experiments also show the proposed scheme outperforms the other classic second order schemes, such as Crank-Nicolson/Adams-Bashforth scheme, linearized Crank-Nicolson’s scheme and extrapolated Gear’s scheme, in solving high physical parameters MHD problems.  相似文献   

20.
A multisymplectic Fourier pseudo-spectral scheme,which exactly preserves the discrete multisymplectic conservation law,is presented to solve the Klein-Gordon-Schrdinger equations.The scheme is of spectral accuracy in space and of second order in time.The scheme preserves the discrete multisymplectic conservation law and the charge conservation law.Moreover,the residuals of some other conservation laws are derived for the geometric numerical integrator.Extensive numerical simulations illustrate the numerical behavior of the multisymplectic scheme,and demonstrate the correctness of the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号