首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper deals with the existence of traveling wave solutions for n‐dimensional delayed reaction–diffusion systems. By using Schauder's fixed point theorem, we establish the existence result of a traveling wave solution connecting two steady states by constructing a pair of upper–lower solutions that are easy to construct. As an application, we apply our main results to a four‐dimensional delayed predator–prey system and obtain the existence of traveling wave solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A hyperbolic predator–prey model is proposed within the context of extended thermodynamics. The nature of the steady state solutions for the uniform and non‐uniform perturbations are analyzed. The existence of smooth traveling wave‐like solutions, related to the invasion of the predator population into a prey‐only state is discussed. Validation of the model in point is also accomplished by searching for numerical solutions of the system, which also points out limit cycles in the populations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we investigate a Mimura–Tsujikawa model with nonlocal delay effect under the homogeneous Neumann boundary condition. By using Lyapunov–Schmidt reduction, we investigate the existence, multiplicity, stability, and Hopf bifurcation of nontrivial steady‐state solutions bifurcating from the nonzero steady‐state solution. Moreover, we illustrate our general results by applications to models with a one‐dimensional spatial domain. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the existence of traveling wave solutions of a delayed predator–prey system with stage structure and nonlocal diffusion. By introducing the partial quasi-monotone condition and cross-iteration scheme, we first consider a class of delayed systems with nonlocal diffusion and deduce the existence of traveling wave solutions to the existence of a pair of upper–lower solutions. When the result is applied to the predator–prey system, we establish the existence of traveling wave solutions, as well as its precisely asymptotic behavior. Our result implies that there is a transition zone moving from the steady state with no species to the steady state with the coexistence of both species.  相似文献   

5.
This work is concerned with the periodic problem for compressible non‐isentropic Euler–Maxwell systems with a temperature damping term arising in plasmas. For this problem, we prove the global in time existence of a smooth solution around a given non‐constant steady state with the help of an induction argument on the order of the mixed time‐space derivatives of solutions in energy estimates. Moreover, we also show the convergence of the solution to this steady state as the time goes to the infinity. This phenomenon on the charge transport shows the essential relation of the systems with the non‐isentropic Euler–Maxwell and the isentropic Euler–Maxwell systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a delayed Cohen–Grossberg neural network with diffusion under homogeneous Neumann boundary conditions is investigated. By analyzing the corresponding characteristic equation, the local stability of the trivial uniform steady state and the existence of Hopf bifurcation at the trivial steady state are established, respectively. By using the normal form theory and the center manifold reduction of partial function differential equations, formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we study the traveling waves of a delayed SIRS epidemic model with nonlocal diffusion and a class of nonlinear incidence rates. When the basic reproduction ratio $\mathscr{R}_0>1$, by using the Schauder''s fixed point theorem associated with upper-lower solutions, we reduce the existence of traveling waves to the existence of a pair of upper-lower solutions. By constructing a pair of upper-lower solutions, we derive the existence of traveling wave solutions connecting the disease-free steady state and the endemic steady state. When $\mathscr{R}_0<1$, the nonexistence of traveling waves is obtained by the comparison principle.  相似文献   

8.
In this paper, a delayed reaction–diffusion neural network with Neumann boundary conditions is investigated. By analyzing the corresponding characteristic equations, the local stability of the trivial uniform steady state is discussed. The existence of Hopf bifurcation at the trivial steady state is established. Using the normal form theory and the center manifold reduction of partial function differential equations, explicit formulae are derived to determine the direction and stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Propagation of two‐dimensional nonlinear ion‐acoustic solitary waves and shocks in a dissipative quantum plasma is analyzed. By applying the reductive perturbation theory, the two‐dimensional ion acoustic solitary waves in a dissipative quantum plasma lead to a nonlinear Kadomtsev–Petviashvili–Burgers (KPB) equation. By implementing extended direct algebraic mapping, extended sech‐tanh, and extended direct algebraic sech methods, the ion solitary traveling wave solutions of the two‐dimensional nonlinear KPB equation are investigated. An analytical as well as numerical solution of the two‐dimensional nonlinear KPB equation is obtained and analyzed with the effects of external electric field and ion pressure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
An epidemic model with vaccination and nonlocal diffusion is proposed, and the existence of traveling wave solutions of this model is studied. By the cross-iteration scheme companied with a pair of upper and lower solutions and Schauder’s fixed point theorem,sufficient conditions are obtained for the existence of a traveling wave solution connecting the disease-free steady state and the endemic steady state.  相似文献   

12.
In this paper, the traveling wave problem for a two-species competition reaction–diffusion–chemotaxis Lotka–Volterra system is investigated. Upper and lower solutions method and fixed point theory are employed to show the existence of traveling wave solutions connecting the coexistence constant steady state with zero state for all large enough wave speed c, and conversely, when c is small, we prove there is no traveling wave solution.  相似文献   

13.
We address the existence of moving gap solitons (traveling localized solutions) in the Gross–Pitaevskii equation with a small periodic potential. Moving gap solitons are approximated by the explicit solutions of the coupled‐mode system. We show, however, that exponentially decaying traveling solutions of the Gross–Pitaevskii equation do not generally exist in the presence of a periodic potential due to bounded oscillatory tails ahead and behind the moving solitary waves. The oscillatory tails are not accounted in the coupled‐mode formalism and are estimated by using techniques of spatial dynamics and local center‐stable manifold reductions. Existence of bounded traveling solutions of the Gross–Pitaevskii equation with a single bump surrounded by oscillatory tails on a large interval of the spatial scale is proven by using these techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
D. Zeidan In this paper, we consider the existence of traveling waves in a generalized nonlinear dispersive–dissipative equation, which is found in many areas of application including waves in a thermoconvective liquid layer and nonlinear electromagnetic waves. By using the theory of dynamical systems, specifically based on geometric singular perturbation theory and invariant manifold theory, Fredholm theory, and the linear chain trick, we construct a locally invariant manifold for the associated traveling wave equation and use this invariant manifold to obtain the traveling waves for the nonlinear dispersive–dissipative equation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
文建立并研究了一个两物种成年个体相互合作的时滞反应扩散模型.利用线性化稳定性方法和Redlinger上、下解方法证明了该模型具有简单的动力学行为,即零平衡点和边界平衡点是不稳定的,而唯一的正平衡点是全局渐近稳定的.同时, 利用Wang, Li 和Ruan建立的具有非局部时滞的反应扩散系统的波前解的存在性,证明了该模型连接零平衡点与唯一正平衡点的波前解的存在性.  相似文献   

16.
A non‐conserved phase transition model of Penrose–Fife type is considered where Dirichlet boundary conditions for the temperature are taken. A sketch of the proof of existence and uniqueness of the solution is given. Then, the large time behaviour of such a solution is studied. By using the Simon–?ojasiewicz inequality it is shown that the whole solution trajectory converges to a single stationary state. Due to the non‐coercive character of the energy functional, the main difficulty in the proof is to control the large values of the temperature. This is achieved by means of non‐standard a priori estimates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is concerned with a non‐selective harvesting predator–prey model with Hassell–Varley type functional response and impulsive effects. By using the fixed point theory based on monotone operator, some simple conditions are obtained for the existence of at least one positive periodic solution of the model. The existence result of this paper implies that the functional response on prey does not influence the existence of positive periodic solution of the model, which completes some results given in recent years. Further, by applying the comparison theorem in impulsive differential equations and constructing a suitable Lyapunov functional, the permanence and global attractivity of the model are also investigated. The main results in this paper extend, complement, and improve the previously known result. And some examples and numerical simulations are given to illustrate the feasibility and effectiveness of the main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Recent studies have shown that the initiation of human cancer is due to the malfunction of some genes (such as E2F, CycE, CycD, Cdc25A, P27Kip1, and Rb) at the R‐checkpoint during the G1‐to‐S transition of the cell cycle. Identifying and modeling the dynamics of these genes provide new insight into the initiation and progression of many types of cancers. In this study, a cancer subnetwork that has a mutual activation between phosphatase Cdc25A and the CycE/Cdk2 complex and a mutual inhibition between the Cdk inhibitor P27Kip1 and the CycE/Cdk2 complex is identified. A new mathematical model for the dynamics of this cancer subnetwork is developed. Positive steady states are determined and rigorously analyzed. We have found a condition for the existence of positive steady states from the activation, inhibition, and degradation parameter values of the dynamical system. We also found a robust condition that needs to be satisfied for the steady states to be asymptotically stable. We determine the parameter value(s) under which the system exhibits a saddle–node bifurcation. We also identify the condition for which the system exhibits damped oscillation solutions. We further explore the possibility of Hopf and homoclinic bifurcations from the saddle–focus steady state of the system. Our analytic and numerical results confirm experimental results in the literature, thus validating our model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the analytical approximate traveling wave solutions of Whitham–Broer–Kaup (WBK) equations, which contain blow‐up solutions and periodic solutions, have been obtained by using the coupled fractional reduced differential transform method. By using this method, the solutions were calculated in the form of a generalized Taylor series with easily computable components. The convergence of the method as applied to the WBK equations is illustrated numerically as well as analytically. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. The results justify that the proposed method is also very efficient, effective and simple for obtaining approximate solutions of fractional coupled modified Boussinesq and fractional approximate long wave equations. Numerical solutions are presented graphically to show the reliability and efficiency of the method. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM) and variational iteration method (VIM), revealing that the present method is superior to others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We investigate the qualitative behavior of a host‐parasitoid model with a strong Allee effect on the host. More precisely, we discuss the boundedness, existence and uniqueness of positive equilibrium, local asymptotic stability of positive equilibrium and existence of Neimark–Sacker bifurcation for the given system by using bifurcation theory. In order to control Neimark–Sacker bifurcation, we apply pole‐placement technique that is a modification of OGY method. Moreover, the hybrid control methodology is implemented in order to control Neimark–Sacker bifurcation. Numerical simulations are provided to illustrate theoretical discussion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号