首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of sintering atmospheres on properties of SrCo0.4Fe0.5Zr0.1O3−δ mixed-conducting membranes were in detail studied in terms of sintering behavior, electrical conductivity and oxygen permeability. The sintering atmospheres were 100% N2, 79% N2–21% O2, 60% N2–40% O2, 40% N2–60% O2, 20% N2–80% O2 and 100% O2 (in vol.%), and the prepared membranes were correspondingly denoted as S-0, S-21, S-40, S-60, S-80 and S-100, respectively. It was found that the properties of membranes were strongly dependent on the sintering atmosphere. As the oxygen partial pressure in the sintering atmosphere (PO2) increased, sintering ability, electrical conductivity and oxygen permeability decreased at first, which was in the order of S-0 > S-21 > S-40. However, as PO2 increased further, sintering ability, electrical conductivity and oxygen permeability increased gradually: S-40 < S-60 < S-80 < S-100. And the S-100 membrane had the best sintering ability, electrical conductivity and oxygen permeability in all membranes.  相似文献   

2.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

3.
A crystalline dipeptide, (R)-phenylglycyl-(R)-phenylglycine (RR-1), recognized p-halobenzyl methyl sulfoxides with high R-enantioselectivity (86–99% ee) to form inclusion compounds. The single-crystal X-ray analyses showed that RR-1 molecules are arranged in parallel and zigzags via hydrogen bonding to construct a pleated sheet. The guest molecules that form hydrogen bond with +NH3 of RR-1 are accommodated in the channel cavity between the layers. In contrast to the inclusion crystals of parent benzyl methyl sulfoxide, in which a rectangular cavity is formed, the cavity including p-halobenzyl methyl sulfoxides becomes rhomboidal. We also examine the guest exchange in these inclusion compounds and it was found that the guest exchanges occur when the host structure changes.  相似文献   

4.
The reaction of N-(3,4-dichlorophenethyl)-N-methylamine (1) with 3-chloromethyl-5-phenyl-1,2,4-oxadiazole (2) was investigated. Employment of an equimolar amount of 1 and 2 in the presence of potassium carbonate led to the expected tertiary amine 3 (N-[(3,4-dichlorophenyl)ethyl]-N-methyl-N-[(5-phenyl-1,2,4-oxadiazol-3-yl)methyl]amine), whereas an excess of 1 and prolonged reaction time resulted in ring fission of the oxadiazole system in 3 and finally in the formation of N′-benzoyl-N-[(3,4-dichlorophenyl)ethyl]-N-methylguanidine (4) and N,N′-bis[(3,4-dichlorophenyl)ethyl]-N,N′-dimethylmethanediamine (5). The structures of products 3–5 were determined by means of 1H and 13C NMR-spectroscopy, mass spectrometry and IR-spectroscopy, for 3 (as picrate) and 4 also X-ray structure analysis was employed. A possible mechanism of the reaction pathway leading to compounds 4 and 5 is proposed.  相似文献   

5.
The crystal structure of N-(2-hydroxy-5-chlorophenyl) salicylaldimine (C13H10NO2Cl) was determined by X-ray analysis. It crystallizes orthorhombic space group P212121 with a=12.967(2) Å, b=14.438(3) Å, c=6.231(3) Å, V=1166.5(6) Å3, Z=4, Dc=1.41 g cm−3 and μ(MoK)=0.315 mm−1. The title compound is thermochromic and the molecule is nearly planar. Both tautomeric forms (keto and enol forms in 68(3) and 32(3)%, respectively) are present in the solid state. The molecules contain strong intramolecular hydrogen bonds, N1–H1O1/O2 (2.515(1) and 2.581(2) Å) for the keto form and O1–H01N1 for the enol one. There is also strong intermolecular O2–HO1 hydrogen bonding (2.599(2) Å) between neighbouring molecules. Minimum energy conformations AM1 were calculated as a function of the three torsion angles, θ1(N1–C7–C6–C5), θ2(C8–N1–C7–C6) and θ3(C9–C8–N1–C7), varied every 10°. Although the molecule is nearly planar, the AM1 optimized geometry of the title compound is not planar. The non-planar conformation of the title compound corresponding to the optimized X-ray structure is the most stable conformation in all calculations.  相似文献   

6.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

7.
Reaction of phenyl magnesium bromide with the ,β-unsaturated ketone 3-methyl-2,3,4,5,6,7-hexahydroind-8(9)-en-1-one, followed by an aqueous work-up, generates the pro-chiral tetra-substituted cyclopentadiene, 1-phenyl-3-methyl-4,5,6,7-tetrahydroindene, CpH, a precursor to the η5-cyclopentadienyl ligand in (Cp)2Fe and [(Cp)Fe(CO)]2(μ-CO)2. Both complexes were generated as mixtures of rac-(RR and SS)- and meso-(RS)-isomers, and in either case pure meso-isomer was isolated by crystallisation and characterised by single crystal X-ray structure, both molecules having crystallographic Ci symmetry. Reduction with Na/Hg cleaves meso-(RS)-[(Cp)Fe(CO)]2(μ-CO)2 and the resulting mixture of (R)- and (S)-[(Cp)Fe(CO)2] anions reacts with MeI to give racemic (Cp)Fe(CO)2Me, which was characterised by the X-ray crystal structure. The Cp ligand is more electron donating than (η-C5H5) as revealed by the reduction potential of the (Cp)2Fe+/(Cp)2Fe couple, E°=−0.127 V (vs. Ag  AgCl). Reaction of LiCp with ZrCl4 yields the zirconocene dichloride [Zr(Cp)2Cl2] as mixture of rac- and meso-isomers, from which pure rac-isomer is obtained as a mixture of RR and SS crystals by recrystallisation. The reaction of rac-[Zr(Cp)2Cl2] with LiMe gives rac-[Zr(Cp)2Me2]. The structures of RR-[Zr(Cp)2Cl2] and rac-[Zr(Cp)2Me2] have been determined by X-ray diffraction. The structural studies reveal the influence of the bulky substituted cyclopentadienyl ligand on the metal---Cp distances and other metric parameters.  相似文献   

8.
Thermal decomposition of mixed ligand thymine (2,4-dihydroxy-5-methylpyrimidine) complexes of divalent Ni(II) with aspartate, glutamate and ADA (N-2-acetamido)iminodiacetate dianions was monitored by TG, DTG and DTA analysis in static atmosphere of air. The decomposition course and steps of complexes [Ni(C5H6N2O2)(C4H5NO4)2−(H2O)2]·H2O, [Ni(C5H6N2O2)(C5H7NO4)2−(H2O)2]·H2O and [Ni(C5H6N2O2)(C6H8N2O5)2−(H2O)2]·1.5H2O were analyzed. The final decomposition products are found to be the corresponding metal oxides. The kinetic parameters namely, activation energy (E*), enthalpy (ΔH*), entropy (ΔS*) and free energy change of decomposition (ΔG*) are calculated from the TG curves using Coats–Redfern and Horowitz–Metzger equations. The stability order found for these complexes follows the trend aspartate > ADA > glutamate.  相似文献   

9.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

10.
In situ reaction of Li[closo-1-Ph-1,2-C2B10H10] with 7-azabicyclo [4.1.0] heptane results in the formation of the disubstituted carborane, closo-1-Ph-2-(2′-aminocyclohexyl)-1,2-C2B10H10 (1), in 63% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol produces the cage-opened nido-carborane, K[nido-7-Ph-8-(2′-aminocyclohexyl)-7,8-C2B9H10] (2), in 80% yield. Deprotonation of the above monoanion with two equivalents of n-butyllithium followed by reaction with anhydrous MCl4 · 2THF (M = Zr, Ti) provides d0-half-sandwich metallocarboranes, closo-1-M(Cl)-2-Ph-3-(2′-σ-(H)N-cyclohexyl)-2,3-η5-C2B9H9 (3 M = Zr; 4 M = Ti) in 53% and 42% yields, respectively. The reaction of Li[closo-1,2-C2B10H11] with 7-azabicyclo [4.1.0] heptane in THF affords closo-1-(2′-aminocyclohexyl)-1,2-C2B10H10 (5) in 59% yield. Immobilization of the carboranyl amino ligand (1) to an organic support, Merrifield’s peptide resin (1%), has been achieved by the reaction of the sodium salt of (5) with polystyryl chloride in THF to produce closo-1-(2′-aminocyclohexyl)-2-polystyryl-1,2-C2B10H10 (6) in 87% yield. Further reaction of the dianion derived from (6) with anhydrous ZrCl4 · 2THF led to the formation of the organic polystyryl supported d0-half-sandwich metallocarborane, closo-1-Zr(Cl)-2-(2′-σ-(H)N-cyclohexyl)-3-polystyryl-2,3-η5-C2B9H9 (7), in 38% yield. These new compounds have been characterized by elemental analyses, NMR, and IR spectra. Polymerizations of both ethylene and vinyl chloride with (3) and (7) have been performed in toluene using MMAO-7 (13% ISOPAR-E) as the co-catalyst. Molecular weights up to 32.8 × 103 (Mw/Mn = 1.8) and 9.5 × 103 (Mw/Mn = 2.1) were obtained for PE and PVC, respectively.  相似文献   

11.
N-(ω-carboxyalkyl)morpholine hydrochlorides, OC4H8N(CH2)nCOOH·HCl, n=1–5, were obtained and analyzed by 13C cross polarization (CP) magic angle spinning (MAS) NMR, FTIR and PM3 calculations. The structure of N-(3-carboxypropyl)morpholine hydrochloride (n=3) has been solved by X-ray diffraction method at 100 K and refined to the R=0.031. The crystals are monoclinic, space group P21/c, a=14.307(3), b=9.879(2), c=7.166(1) Å, β=93.20(3)°, V=1011.3(3) Å3, Z=4. In this compound the nitrogen atom is protonated and two molecules form a centrosymmetric dimer, connected by two N+–HCl (3.095(1) Å) and two O–HCl (3.003(1) Å) hydrogen bonds. 13C CP MAS NMR spectra, contrary to the solution, showed non-equivalence of the ring carbon atoms. The PM3 calculations predict a molecular dimer without proton transfer for an HCl complex, while for an HBr complex an ion pairs with proton transfer, and reproduces correctly the conformation of both dimers but overestimates H-bond distances. Shielding constants calculated from the PM3 geometry of ion pairs gave a linear correlation with the 13C chemical shifts in solids.  相似文献   

12.
The reactions of RNHSi(Me)2Cl (1, R=t-Bu; 2, R=2,6-(Me2CH)2C6H3) with the carborane ligands, nido-1-Na(C4H8O)-2,3-(SiMe3)2-2,3-C2B4H5 (3) and Li[closo-1-R′-1,2-C2B10H10] (4), produced two kinds of neutral ligand precursors, nido-5-[Si(Me)2N(H)R]-2,3-(SiMe3)2-2,3-C2B4H5, (5, R=t-Bu) and closo-1-R′-2-[Si(Me)2N(H)R]-1,2-C2B10H10 (6, R=t-Bu, R′=Ph; 7, R=2,6-(Me2CH)2C6H3, R′=H), in 85, 92, and 95% yields, respectively. Treatment of closo-2-[Si(Me)2NH(2,6-(Me2CH)2C6H3)]-1,2-C2B10H11 (7) with three equivalents of freshly cut sodium metal in the presence of naphthalene produced the corresponding cage-opened sodium salt of the “carbons apart” carborane trianion, [nido-3-{Si(Me)2N(2,6-(Me2CH)2C6H3)}-1,3-C2B10H11]3− (8) in almost quantitative yield. The reaction of the trianion, 8, with anhydrous MCl4 (M=Ti and Zr) in 1:1 molar ratio in dry tetrahydrofuran (THF) at −78 °C, resulted in the formation of the corresponding half-sandwich neutral d0-metallacarborane, closo-1-M[(Cl)(THF)n]-2-[1′-η1σ-N(2,6-(Me2CH)2C6H3)(Me)2Si]-2,4-η6-C2B10H11 (M=Ti (9), n=0; M=Zr (10), n=1) in 47 and 36% yields, respectively. All compounds were characterized by elemental analysis, 1H-, 11B-, and 13C-NMR spectra and IR spectra. The carborane ligand, 7, was also characterized by single crystal X-ray diffraction. Compound 7 crystallizes in the monoclinic space group P21/c with a=8.2357(19) Å, b=28.686(7) Å, c=9.921(2) Å; β=93.482(4)°; V=2339.5(9) Å3, and Z=4. The final refinements of 7 converged at R=0.0736; wR=0.1494; GOF=1.372 for observed reflections.  相似文献   

13.
Optically active nitroalkenes 4 were synthesized via Henry reaction. Conjugate addition of vinylmagnesium bromide to 4 gave nitroalkane syn-5 while cyclopropanation with sulfur ylides or dibromocarbene afforded nitrocyclopropanes 8, 10 and 11 in a diastereoselective manner. These products were used to synthesize optically active β-amino acids 7 and 16 as well as cyclopropane γ-amino acids 19 and 20 by reduction of the nitro group and oxidative cleavage of the dioxolane substituent.  相似文献   

14.
The Monsanto acetic acid process is one of the most effective ways to produce acetic acid industrially. This process has been studied experimentally but theoretical investigations are so far sparse. In the current work the active catalytic species [Rh(CO)2I2] (1) and its isomerisation has been studied theoretically using the hybrid B3LYP exchange and correlation functional. Similar calculations has been performed for the iridium complex [Ir(CO)2I2] (2) that also is catalytically active in the methanol carbonylation. Experimental work has confirmed the existence of the cis forms of the active catalytic species, but they do not rule out the possibility of the trans isomers. Our gas phase results show that cis-1 has 4.95 kcal/mol lower free energy than trans-1, and cis-2 has 10.39 kcal/mol lower free energy than trans-2. In the case of rhodium, trans-1 can take part to the catalytic cycle but in case of iridium this is not very likely. We have also investigated the possible mechanisms of the cis to trans conversions. The ligand association mechanism gave free energy barrier of 13.7 kcal/mol for the rhodium complex and 19.8 kcal/mol for iridium. Thus the conversion for the rhodium complex is feasible whereas for iridium it is unlikely.  相似文献   

15.
For a closed-shell MO configuration with 2n electrons which occupy n non-degenerate canonical MOs, it is deduced that the RHF energy, Σni=1[2H0nnj-1(2Jij-Kij)], may be expressed in Hückel-like form as 2Σni-1ε, −Σni-1[ji(λ+1)+1,(λ+2)] with λ=2(n-i). The li(λ+1) and Ii(λ+2) are the ionization potentials for the HOMO ψ, which arises after λ and λ+1 electrons have been successively removed from the initial configuration.  相似文献   

16.
An improved synthesis of 2,2′-bis(1-indenyl)propane and the corresponding ansa-complexes of zirconium are reported. Synthesis of a mixture of rac- and meso-2,2′-propylidene-bis(1-indenyl)zirconium dichlorides involves a treatment of ZrCl4 with bis[3-(trialkyltin)inden-1-yl]propane, where alkyl = ethyl, butyl, in toluene. This reaction gives the products in 92% yield and might be a convenient synthetic pathway to a number of straightforward ansa-metallocenes. Both rac- and meso-2,2′-propylidene-bis(1-indenyl)zirconium dichlorides were separated and isolated using simple work-up processes, and characterized by X-ray crystal structure analysis (rac:C2/c; a = 15.903(3) Å, b = 11.105(2) Å and c = 11.520(2) Å; β = 121.61(3)°; Z = 4; V = 1732.6(5) Å3; R = 0.0350; meso-: P1¯; a = 9.739(2) Å, b = 12.798(4) Å and c = 15.322(4) Å; = 101.18(2)°; β = 121.61(2)°; γ = 90.54(2)°, Z = 4; V = 1795.4(8) Å3; R = 0.0417).  相似文献   

17.
The new host 1,4,11,14-tetramethoxy-dibenzo[b,n]tetraphenylene forms a 1:1 inclusion compound with pyridine, in which a pair of centrosymmetrically-related guest species are enclosed in the cage surrounded by six host molecules. C36H28O4·C5H5N, FW=603.68, triclinic, space group P-1, a=11.796(2), b=16.075(3), c=9.004(2) Å; =98.39(3)°, β=90.01(3)°, γ=108.19(3)°, V=1602.8(5) Å3, Z=2, F(000)=636, Dc=1.251 g/cm3, μ=0.080 mm−1. The final R indices [I>2σ(I)] R1=0.0759, wR2=0.1970 for 5623 MoK observed data.  相似文献   

18.
Reaction of the activated mixture of Re2(CO)10, Me3NO and MeOH with a 1:1 mixture of rac (d/l)- and meso-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (hptpd) yields a mixture of (d/l)- and meso-[{Re2(μ-OMe)2(CO)6}2(μ,μ′-hptpd)] 1. The diastereomers can be easily separated by selective dissolution of d/l-1 in benzene, and give clearly distinguishable 1H- and 31P-NMR spectra. The fluxional behavior of d/l-1 in solution has been studied by variable-temperature 1H- and 31P-{1H}-NMR spectroscopy. The crystal structures of both d/l- and meso-1 have been determined. Both molecules consist of two {Re2(μ-OMe)2(CO)6} moieties which are bridged by the two P---CH2---CH2---P moieties of the hptpd ligand. Whilst the molecules of meso-1 possess crystallographic i-symmetry, those of d/l-1 do not have any crystallographic symmetry. These diastereomers therefore give clearly distinguishable Raman spectra in the solid state. Reaction of tris[2-(diphenylphosphino)ethyl]phosphine (tdppep) with the activated mixture affords the complex [{Re2(μ-OMe)2(CO)6}(μ,η2-tdppep)] 2, and the analogous reaction involving bis[2-diphenylphospinoethyl)phenylphosphine (triphos) gives [{Re2(μ-OMe)2(CO)6}(μ,μ′,η3-triphos){Re2(CO)9}] 3 and [{Re2(μ-OMe)2(CO)6}(μ,η2-triphos)] 4.  相似文献   

19.
The asymmetric total synthesis of (−)-dehydroclausenamide 1 was accomplished through a concise and efficient synthetic route employing as the key step the novel formation of cis-epoxy amide 7, which was resulted from the reaction of starting material 4 bearing an optically pure erythro vicinal diol unit with 5H-3-oxa-octafluoro pentanesulfonyl fluoride (HCF2CF2OCF2CF2SO2F) in the presence of 1,8-diazabicyclo[5.4.0]-7-undecene (DBU).  相似文献   

20.
The reactions of 2-trans-6-N4P4(NHPrn)2Cl6 (2), which was obtained from N4P4Cl8 (1) and n-propylamine, with pyrrolidine and t-butylamine in different solvents have been studied. Compound (2) gave two different products, namely monocyclic (3 and 5) and bicyclic (4 and 6) phosphazenes. Compounds (2–6) have been characterized by elemental analysis, IR, 1H-, 13C-, 31P NMR, HETCOR and MS and the structure of compound (5) has been examined crystallographically. The bicyclic phosphazene (6) is the first exciting example of bicyclic phosphazenes containing chlorine atoms, in the literature. The formation mechanisms of bicyclic phosphazenes are re-considered by taking into account the synthesis of compound (6), which contains three stereogenic phosphorus atoms. Compound (5) crystallizes in the monocyclic space group P21/n with a=13.974(2), b=17.836(5), and c=18.683(4) Å, β=98.50(1)°, V=4605.4(2) Å3, Z=4 and Dx=1.051 g cm−3. It consists of a non-centrosymmetric, non-planar phosphazene ring in a saddle conformation, with two n-propylamino (in 2-trans-6 positions) and six bulky t-butylamino side groups. The bulky substituents are instrumental in determining the molecular geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号