首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The title compound, C17H11F5N4O, is described and compared with two closely related analogues in the literature. There are two independent molecules in the asymmetric unit, linked by N—H...O hydrogen bonds and π–π interactions into dimeric entities, presenting a noticeable noncrystallographic C2 symmetry. These dimers are in turn linked by a medium‐strength type‐I C—F...F—C interaction into elongated tetramers. Much weaker C—H...F contacts link the tetramers into broad two‐dimensional substructures parallel to (101).  相似文献   

2.
The mixed‐amide phosphinates, rac‐phenyl (N‐methylcyclohexylamido)(p‐tolylamido)phosphinate, C20H27N2O2P, (I), and rac‐phenyl (allylamido)(p‐tolylamido)phosphinate, C16H19N2O2P, (II), were synthesized from the racemic phosphorus–chlorine compound (R,S)‐(Cl)P(O)(OC6H5)(NHC6H4p‐CH3). Furthermore, the phosphorus–chlorine compound ClP(O)(OC6H5)(NH‐cyclo‐C6H11) was synthesized for the first time and used for the synthesis of rac‐phenyl (benzylamido)(cyclohexylamido)phosphinate, C19H25N2O2P, (III). The strategies for the synthesis of racemic mixed‐amide phosphinates are discussed. The P atom in each compound is in a distorted tetrahedral (N1)P(=O)(O)(N2) environment. In (I) and (II), the p‐tolylamido substituent makes a longer P—N bond than those involving the N‐methylcyclohexylamido and allylamido substituents. In (III), the differences between the P—N bond lengths involving the cyclohexylamido and benzylamido substituents are not significant. In all three structures, the phosphoryl O atom takes part with the N—H unit in hydrogen‐bonding interactions, viz. an N—H...O=P hydrogen bond for (I) and (N—H)(N—H)...O=P hydrogen bonds for (II) and (III), building linear arrangements along [001] for (I) and along [010] for (III), and a ladder arrangement along [100] for (II).  相似文献   

3.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

4.
The title compound, C18H18N4OS2, was prepared by reaction of S,S‐diethyl 2‐thenoylimidodithiocarbonate with 5‐amino‐3‐(4‐methylphenyl)‐1H‐pyrazole using microwave irradiation under solvent‐free conditions. In the molecule, the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.814 (4) and 0.186 (4), and the bonded distances provide evidence for polarization in the acylthiourea fragment and for aromatic type delocalization in the pyrazole ring. An intramolecular N—H...O hydrogen bond is present, forming an S(6) motif, and molecules are linked by N—H...O and N—H...N hydrogen bonds to form a ribbon in which centrosymmetric R22(4) rings, built from N—H...O hydrogen bonds and flanked by inversion‐related pairs of S(6) rings, alternate with centrosymmetric R22(6) rings built from N—H...N hydrogen bonds.  相似文献   

5.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

6.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

7.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

8.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

9.
In the title compound, C15H12N4OS2, the bond distances in the fused heterocyclic system show evidence for aromatic‐type delocalization in the pyrazole ring with some bond fixation in the triazine ring. The thiophenyl substituent is slightly disordered over two sets of atomic sites having occupancies of 0.934 (4) and 0.066 (4). The non‐H atoms in the entire molecule are nearly coplanar, with the planes of the furanyl substituent and the major orientation of the thiophenyl substituent making dihedral angles of 5.72 (17) and 1.8 (3)°, respectively, with that of the fused ring system. Molecules are linked into centrosymmetric R22(10) dimers by C—H...O hydrogen bonds and these dimers are further linked into chains by a single π–π stacking interaction. Comparisons are made with some related 4,7‐diaryl‐2‐(ethylsulfanyl)pyrazolo[1,5‐a][1,3,5]triazines which contain variously substituted aryl groups in place of the furanyl and thiophenyl substituents in the title compound.  相似文献   

10.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   

11.
Isatin (1H‐indole‐2,3‐dione) derivatives represent synthetically useful substrates which can be used to prepare a broad range of heterocyclic compounds. In the title compounds, C18H17NO5, (I), and C15H10FNO2, (II), the isatin ring systems are planar and form a dihedral angle of 73.04 (7)° in (I) and 76.82 (11)° in (II) with the benzyl groups. The bicyclic scaffolds in both compounds are almost superimposable, with an r.m.s. deviation of 0.061 Å. The crystal structures of both derivatives are stabilized by C—H...O interactions. These contacts generate an R12(7) ring motif in (I) and a C(7) chain motif in (II).  相似文献   

12.
The title molecule, C40H32O6, possesses crystallographically imposed twofold symmetry, with the central two C atoms of the naphthalene unit sited on the rotation axis. The two 4‐phenoxybenzoyl groups in the molecule are twisted away from the attached naphthalene unit, with a torsion angle of 66.76 (15)° between the naphthalene unit and the carbonyl group (C—C—C=O), and are oriented in mutually opposing directions (anti orientation). There is an apparent difference in the conformations of the 4‐phenoxybenzoyl groups at the 1‐ and 8‐positions of the naphthalene ring between the title molecule and its methoxy‐bearing homologue [Hijikata et al. (2010). Acta Cryst. E 66 , o2902–o2903]. Whilst the 4‐phenoxybenzoyl groups in 2,7‐diisopropoxy‐1,8‐bis(4‐phenoxybenzoyl)naphthalene [Yoshiwaka et al. (2013). Acta Cryst. E 69 , o242] are situated in the same anti orientation as the title molecule, those of 2,7‐dimethoxy‐1,8‐bis(4‐phenoxybenzoyl)naphthalene are oriented in the same direction with respect to the naphthalene ring system, i.e. in a syn orientation.  相似文献   

13.
Molecules of the title compound, C18H16FNO, are linked into a three‐dimensional framework structure by a combination of two C—H...O hydrogen bonds and three C—H...π(arene) hydrogen bonds. Comparisons are made with the (2R,4R) diastereoisomer and with the corresponding pair of diastereoisomeric 7‐chloro analogues.  相似文献   

14.
The mixed organic–inorganic title salt, C7H18N2O2+·C2HO4·Cl, forms an assembly of ionic components which are stabilized through a series of hydrogen bonds and charge‐assisted intermolecular interactions. The title assembly crystallizes in the monoclinic C2/c space group with Z = 8. The asymmetric unit consists of a 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dication, a hydrogen oxalate counter‐anion and an inorganic chloride counter‐anion. The organic cations and anions are connected through a network of N—H...O, O—H...O and C—H...O hydrogen bonds, forming several intermolecular rings that can be described by the graph‐set notations R33(13), R21(5), R12(5), R21(6), R23(6), R22(8) and R33(9). The 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dications are interconnected through N—H...O hydrogen bonds, forming C(9) chains that run diagonally along the ab face. Furthermore, the hydrogen oxalate anions are interconnected via O—H...O hydrogen bonds, forming head‐to‐tail C(5) chains along the crystallographic b axis. The two types of chains are linked through additional N—H...O and O—H...O hydrogen bonds, and the hydrogen oxalate chains are sandwiched by the 4‐(3‐azaniumylpropyl)morpholin‐4‐ium chains, forming organic layers that are separated by the chloride anions. Finally, the layered three‐dimensional structure is stabilized via intermolecular N—H...Cl and C—H...Cl interactions.  相似文献   

15.
The synthesis and evaluation of the pharmacological activities of molecules containing the sulfonamide moiety have attracted interest as these compounds are important pharmacophores. The crystal structures of three closely related N‐aryl‐2,5‐dimethoxybenzenesulfonamides, namely N‐(2,3‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (I), N‐(2,4‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (II), and N‐(2,4‐dimethylphenyl)‐2,5‐dimethoxybenzenesulfonamide, C16H19NO4S, (III), are described. The asymmetric unit of (I) consists of two symmetry‐independent molecules, while those of (II) and (III) contain one molecule each. The molecular conformations are stabilized by different intramolecular interactions, viz. C—H…O interactions in (I), N—H…Cl and C—H…O interactions in (II), and C—H…O interactions in (III). The crystals of the three compounds display different supramolecular architectures built by various weak intermolecular interactions of the types C—H…O, C—H…Cl, C—H…π(aryl), π(aryl)–π(aryl) and Cl…Cl. A detailed Hirshfeld surface analysis of these compounds has also been conducted in order to understand the relationship between the crystal structures. The d norm and shape‐index surfaces of (I)–(III) support the presence of various intermolecular interactions in the three structures. Analysis of the fingerprint plots reveals that the greatest contribution to the Hirshfeld surfaces is from H…H contacts, followed by H…O/O…H contacts. In addition, comparisons are made with the structures of some related compounds. Putative N—H…O hydrogen bonds are observed in 29 of the 30 reported structures, wherein the N—H…O hydrogen bonds form either C (4) chain motifs or R 22(8) rings. Further comparison reveals that the characteristics of the N—H…O hydrogen‐bond motifs, the presence of other interactions and the resultant supramolecular architecture is largely decided by the position of the substituents on the benzenesulfonyl ring, with the nature and position of the substituents on the aniline ring exerting little effect. On the other hand, the crystal structures of (I)–(III) display several weak interactions other than the common N—H…O hydrogen bonds, resulting in supramolecular architectures varying from one‐ to three‐dimensional depending on the nature and position of the substituents on the aniline ring.  相似文献   

16.
The title compound, C21H26FN3O7, is assembled by N—H...O and O—H...O hydrogen bonds into well‐separated two‐dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C—H...O and C—H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C—N and C—C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.  相似文献   

17.
In (2SR,4RS)‐7‐chloro‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13Cl2NO, (I), the molecules are linked by a combination of C—H...O and C—H...N hydrogen bonds into a chain of edge‐fused R33(12) rings. The isomeric compound (2S,4R)‐7‐chloro‐2‐exo‐(2‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, (II), crystallizes as a single 2S,4R enantiomer and the molecules are linked into a three‐dimensional framework structure by two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The molecules of (2S,4R)‐7‐chloro‐2‐exo‐(1‐naphthyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C20H16ClNO, (III), are also linked into a three‐dimensional framework structure, here by one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds. The significance of this study lies in its observation of the variations in molecular configuration and conformation, and in the variation in the patterns of supramolecular aggregation, consequent upon modest changes in the peripheral substituents.  相似文献   

18.
The asymmetric unit of the title compound, C12H18O2, contains two independent molecules. They differ only slightly in conformation but form completely different intermolecular hydrogen‐bonded arrays. One molecule exhibits disorder in the hydroxy group region, but this does not influence the formation of hydrogen bonds. The bulky tert‐butyl group on one side of the carbinol C atom and the benzene ring on the other side promote the formation of discrete dimeric motifs via hydrogen‐bridged hydroxy groups. Dimers are further joined by strong hydroxy–methoxy O—H...O bonds to form chains with dangling alcohol groups. Weaker intermolecular C—H...O interactions mediate the formation of a two‐dimensional network.  相似文献   

19.
The title three‐component cocrystal, C6F3I3·2C5H5NO·H2O, has been prepared as a strong candidate for multiple I...O interactions. Its crystal structure is compared with its 1:1 close relative, C6F3I3·C5H5NO [Aakeröy et al. (2014a). CrystEngComm, 16 , 28–31]. The 1,3,5‐trifluoro‐2,4,6‐triiodobenzene and water species both have crystallographic twofold axial symmetry. The main synthon in both structures is the π–π stacking of benzene rings, complemented by a number of O—H...O, C—F...π and, fundamentally, C—I...O interactions. As expected, the latter are among the strongest and more directional interactions of the sort reported in the literature, confirming that pyridine N‐oxide is an eager acceptor. On the other hand, the structure presents only two of these contacts per 1,3,5‐trifluoro‐2,4,6‐triiodobenzene molecule instead of the expected three. Possible reasons for this limitation are analyzed.  相似文献   

20.
The carboxylic acid group is an example of a functional group which possess a good hydrogen‐bond donor (–OH) and acceptor (C=O). For this reason, carboxylic acids have a tendency to self‐assembly by the formation of hydrogen bonds between the donor and acceptor sites. We present here the crystal structure of N‐tosyl‐l ‐proline (TPOH) benzene hemisolvate {systematic name: (2S)‐1‐[(4‐methylbenzene)sulfonyl]pyrrolidine‐2‐carboxylic acid benzene hemisolvate}, C12H15NO4S·0.5C6H6, (I), in which a cyclic R22(8) hydrogen‐bonded carboxylic acid dimer with a strong O—(H)…(H)—O hydrogen bond is observed. The compound was characterized by single‐crystal X‐ray diffraction and NMR spectroscopy, and crystallizes in the space group I2 with half a benzene molecule and one TPOH molecule in the asymmetric unit. The H atom of the carboxyl OH group is disordered over a twofold axis. An analysis of the intermolecular interactions using the noncovalent interaction (NCI) index showed that the TPOH molecules form dimers due to the strong O—(H)…(H)—O hydrogen bond, while the packing of the benzene solvent molecules is governed by weak dispersive interactions. A search of the Cambridge Structural Database revealed that the disordered dimeric motif observed in (I) was found previously only in six crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号