首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

2.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

3.
Recrystallization of the title compound, [Fe(C5H5)(C14H13N2O3)], from a mixture of n‐hexane and dichloromethane gave the new polymorph, denoted (I), which crystallizes in the same space group (P) as the previously reported structure, denoted (II). The Fe—C distances in (I) range from 2.015 (3) to 2.048 (2) Å and the average value of the C—C bond lengths in the two cyclopentadienyl (Cp) rings is 1.403 (13) Å. As indicated by the smallest C—Cg1—Cg2—C torsion angle of 1.4° (Cg1 and Cg2 are the centroids of the two Cp rings), the orientation of the Cp rings in (I) is more eclipsed than in the case of (II), for which the value was 15.3°. Despite the pronounced conformational similarity between (I) and (II), the formation of self‐complementary N—H...O hydrogen‐bonded dimers represents the only structural motif common to the two polymorphs. In the extended structure, molecules of (I) utilize C—H...O hydrogen bonds and, unlike (II), an extensive set of intermolecular C—H...π interactions. Fingerprint plots based on Hirshfeld surfaces are used to compare the packing of the two polymorphs.  相似文献   

4.
Two novel cocrystals of the N(7)—H tautomeric form of N6‐benzoyladenine (BA), namely N6‐benzoyladenine–3‐hydroxypyridinium‐2‐carboxylate (3HPA) (1/1), C12H9N5O·C6H5NO3, (I), and N6‐benzoyladenine–DL‐tartaric acid (TA) (1/1), C12H9N5O·C4H6O6, (II), are reported. In both cocrystals, the N6‐benzoyladenine molecule exists as the N(7)—H tautomer, and this tautomeric form is stabilized by intramolecular N—H...O hydrogen bonding between the benzoyl C=O group and the N(7)—H hydrogen on the Hoogsteen site of the purine ring, forming an S(7) motif. The dihedral angle between the adenine and phenyl planes is 0.94 (8)° in (I) and 9.77 (8)° in (II). In (I), the Watson–Crick face of BA (N6—H and N1; purine numbering) interacts with the carboxylate and phenol groups of 3HPA through N—H...O and O—H...N hydrogen bonds, generating a ring‐motif heterosynthon [graph set R22(6)]. However, in (II), the Hoogsteen face of BA (benzoyl O atom and N7; purine numbering) interacts with TA (hydroxy and carbonyl O atoms) through N—H...O and O—H...O hydrogen bonds, generating a different heterosynthon [graph set R22(4)]. Both crystal structures are further stabilized by π–π stacking interactions.  相似文献   

5.
The title compound, C13H10N2O4, adopts the keto–amine tautomeric form and displays an intramolecular N—H⋯O [N⋯O = 2.579 (2) Å] and three intermolecular O—H⋯O [O⋯O = 2.561 (2) Å] and C—H⋯O [C⋯O = 3.274 (2) and 3.318 (2) Å] hydrogen bonds. The keto–amine structure is favoured by through‐mol­ecule conjugation between the hydroxy O atom and imine N atom. The dihedral angle between the planes of the two aromatic rings is 10.79 (4)°.  相似文献   

6.
Both 7‐carboxyl­ato‐8‐hydroxy‐2‐methyl­quinolinium monohydrate, C11H9NO3·H2O, (I), and 7‐carboxy‐8‐hydroxy‐2‐methyl­quinolinium chloride monohydrate, C11H10NO3+·Cl·H2O, (II), crystallize in the centrosymmetric P space group. Both compounds display an intramolecular O—H⋯O hydrogen bond involving the hydroxy group; this hydrogen bond is stronger in (I) due to its zwitterionic character [O⋯O = 2.4449 (11) Å in (I) and 2.5881 (12) Å in (II)]. In both crystal structures, the HN+ group participates in the stabilization of the structure via intermolecular hydrogen bonds with water mol­ecules [N⋯O = 2.7450 (12) Å in (I) and 2.8025 (14) Å in (II)]. In compound (II), a hydrogen‐bond network connects the Cl anion to the carboxylic acid group [Cl⋯O = 2.9641 (11) Å] and to two water mol­ecules [Cl⋯O = 3.1485 (10) and 3.2744 (10) Å].  相似文献   

7.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

8.
Crystals of 5‐hydroxy‐6‐methyl‐2‐pyridone, (I), grown from a variety of solvents, are invariably trigonal (space group R); these are 5‐hydroxy‐6‐methyl‐2‐pyridone acetone 0.1667‐solvate, C6H7NO2·0.1667C3H6O, (Ia), and 6‐methyl‐5‐hydroxy‐2‐pyridone propan‐2‐ol 0.1667‐solvate, C6H7NO2·0.1667C3H8O, (Ib), and the forms from methanol, (Ic), water, (Id), benzonitrile, (Ie), and benzyl alcohol, (If). They incorporate channels running the length of the c axis that contain extensively disordered solvent molecules. A solvent‐free sublimed powder of 5‐hydroxy‐6‐methyl‐2‐pyridone microcrystals is essentially isostructural. Inversion‐related host molecules interact via pairs of N—H...O hydrogen bonds to form R22(8) dimers. Six of these dimers form large R126(42) puckered rings, in which the O atom of each N—H...O hydrogen bond is also the acceptor in an O—H...O hydrogen bond that involves the 5‐hydroxy group. The large R126(42) rings straddle the axes and form stacked columns viaπ–π interactions between inversion‐related molecules of (I) [mean interplanar spacing = 3.254 Å and ring centroid–centroid distance = 3.688 (2) Å]. The channels are lined by methyl groups, which all point inwards to the centre of the channels.  相似文献   

9.
The mol­ecule of the former title compound, C13H9ClN2O2, (I), is nearly planar, with an intramolecular O⋯O hydrogen bond of 2.692 (2) Å. The latter title compound, C17H18ClN3O4, (II), exists in the keto–amine tautomeric form, with a strong intramolecular hydrogen bond of 2.640 (2) Å between the O and N atoms, the H atom being bonded to the N atom. The azo­benzene moieties of both mol­ecules have trans configurations, and the dihedral angle between the planes of the two aromatic rings is 4.1 (1)° in (I) and 9.9 (1)° in (II). The N—H⋯O hydrogen‐bonded rings are almost planar and coupled with the cyclo­hexa­diene rings in (II).  相似文献   

10.
The title compounds, C8H11NO, (I), and 2C8H12NO+·C4H4O42−, (II), both crystallize in the monoclinic space group P21/c. In the crystal structure of (I), intermolecular O—H...N hydrogen bonds combine the molecules into polymeric chains extending along the c axis. The chains are linked by C—H...π interactions between the methylene H atoms and the pyridine rings into polymeric layers parallel to the ac plane. In the crystal structure of (II), the succinate anion lies on an inversion centre. Its carboxylate groups interact with the 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium cations via intermolecular N—H...O hydrogen bonds with the pyridine ring H atoms and O—H...O hydrogen bonds with the hydroxy H atoms to form polymeric chains, which extend along the [01] direction and comprise R44(18) hydrogen‐bonded ring motifs. These chains are linked to form a three‐dimensional network through nonclassical C—H...O hydrogen bonds between the pyridine ring H atoms and the hydroxy‐group O atoms of neighbouring cations. π–π interactions between the pyridine rings and C—H...π interactions between the methylene H atoms of the succinate anion and the pyridine rings are also present in this network.  相似文献   

11.
The three title isomers, 4‐, (I), 3‐, (II), and 2‐fluoro‐N′‐(4‐pyridyl)benzamide, (III), all C12H9FN2O, crystallize in the P21/c space group (No. 14) with similar unit‐cell parameters and are isomorphous and isostructural at the primary hydrogen‐bonding level. An intramolecular C—H...O=C interaction is present in all three isomers [C...O = 2.8681 (17)–2.884 (2) Å and C—H...O117–118°], with an additional N—H...F [N...F = 2.7544 (15) Å] interaction in (III). Intermolecular amide–pyridine N—H...N hydrogen bonds link molecules into one‐dimensional zigzag chains [graph set C(6)] along the [010] direction as the primary hydrogen bond [N...N = 3.022 (2), 3.049 (2) and 3.0213 (17) Å]. These are augmented in (I) by C—H...π(arene) and cyclic C—F...π(arene) contacts about inversion centres, in (II) by C—F...F—C interactions [C...F = 3.037 (2) Å] and weaker C—H...π(arene)/C—H...F contacts, and in (III) by C—H...π(arene) and C=O...O=C interactions, linking the alternating chains into two‐dimensional sheets. Typical amide N—H...O=C hydrogen bonds [as C(4) chains] are not present [N...O = 3.438 (2) Å in (I), 3.562 (2) Å in (II) and 3.7854 (16) Å in (III)]; the C=O group is effectively shielded and only participates in weaker interactions/contacts. This series is unusual as the three isomers are isomorphous (having similar unit‐cell parameters, packing and alignment), but they differ in their interactions and contacts at the secondary level.  相似文献   

12.
The title compounds, 2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO4, (I), 6‐hydroxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO5, (II), and 6‐methoxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C12H17NO5, (III), adopt the keto–amine tautomeric form, with the formal hydroxy H atom located on the N atom, and the NH group and oxo O atom display a strong intramolecular N—H⋯O hydrogen bond. The N—H⋯O hydrogen‐bonded rings are almost planar and coupled with the cyclo­hexa­diene rings. The carbonyl O atoms accept two other H atoms from the alcohol groups of adjacent mol­ecules in (I), and one from the alcohol and one from the phenol group in (II), but from only one alcohol H atom in (III).  相似文献   

13.
In the title compounds, C12H20O6, (I), and C9H16O6, (II), the five‐membered furanose ring adopts a 4T3 conformation and the five‐membered 1,3‐dioxolane ring adopts an E3 conformation. The six‐membered 1,3‐dioxane ring in (I) adopts an almost ideal OC3 conformation. The hydrogen‐bonding patterns for these compounds differ substantially: (I) features just one intramolecular O—H...O hydrogen bond [O...O = 2.933 (3) Å], whereas (II) exhibits, apart from the corresponding intramolecular O—H...O hydrogen bond [O...O = 2.7638 (13) Å], two intermolecular bonds of this type [O...O = 2.7708 (13) and 2.7730 (12) Å]. This study illustrates both the similarity between the conformations of furanose, 1,3‐dioxolane and 1,3‐dioxane rings in analogous isopropylidene‐substituted carbohydrate structures and the only negligible influence of the presence of a 1,3‐dioxane ring on the conformations of furanose and 1,3‐dioxolane rings. In addition, in comparison with reported analogs, replacement of the –CH2OH group at the C1‐furanose position by another group can considerably affect the conformation of the 1,3‐dioxolane ring.  相似文献   

14.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

15.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

16.
The title compound, C12H8N2O6S2, (I), is a positional isomer of S‐(2‐nitrophenyl) 2‐nitrobenzenethiosulfonate [Glidewell, Low & Wardell (2000). Acta Cryst. B 56 , 893–905], (II). The most obvious difference between the two isomers is the rotation of the nitro groups with respect to the planes of the adjacent aryl rings. In (I), the nitro groups are only slightly rotated out of the plane of the adjacent aryl ring [2.4 (6) and 6.7 (7)°], while in (II) the nitro groups are rotated by between 37 and 52°, in every case associated with S—S—C—C torsion angles close to 90°. Other important differences between the isomers are the C—S—S(O2)—C torsion angle [78.39 (2)° for (I) and 69.8 (3)° for (II) (mean)] and the dihedral angles between the aromatic rings [12.3 (3)° for (I) and 28.6 (3)° for (II) (mean)]. There are two types of C—H...O hydrogen bond in the structure [C...O = 3.262 (7) Å and C—H...O = 144°; C...O = 3.447 (7) Å and C—H...O = 166°] and these link the molecules into a two‐dimensional framework. The hydrogen‐bond‐acceptor properties differ between the two isomers.  相似文献   

17.
The structures of 5‐(2‐hydroxyethyl)‐2‐[(pyridin‐2‐yl)amino]‐1,3‐thiazolidin‐4‐one, C10H11N3O2S, (I), and ethyl 4‐[(4‐oxo‐1,3‐thiazolidin‐2‐yl)amino]benzoate, C12H12N2O3S, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46 , 635–639] and HEGLUC [Behbehani & Ibrahim (2012). Molecules, 17 , 6362–6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B 58 , 380–388], have been redetermined at 130 K. This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl–imine group in the five‐membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin‐4‐one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin‐4‐one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong N—H...N and O—H...O and weak C—H...O hydrogen bonds, linking the molecules into a three‐dimensional hydrogen‐bond network. On the other hand, in (II), the molecules are linked via N—H...O hydrogen bonds into chains.  相似文献   

18.
The synthesis of pharmaceutical cocrystals is a strategy to enhance the performance of active pharmaceutical ingredients (APIs) without affecting their therapeutic efficiency. The 1:1 pharmaceutical cocrystal of the antituberculosis drug pyrazinamide (PZA) and the cocrystal former p‐aminobenzoic acid (p‐ABA), C7H7NO2·C5H5N3O, (1), was synthesized successfully and characterized by relevant solid‐state characterization methods. The cocrystal crystallizes in the monoclinic space group P21/n containing one molecule of each component. Both molecules associate via intermolecular O—H...O and N—H...O hydrogen bonds [O...O = 2.6102 (15) Å and O—H...O = 168.3 (19)°; N...O = 2.9259 (18) Å and N—H...O = 167.7 (16)°] to generate a dimeric acid–amide synthon. Neighbouring dimers are linked centrosymmetrically through N—H...O interactions [N...O = 3.1201 (18) Å and N—H...O = 136.9 (14)°] to form a tetrameric assembly supplemented by C—H...N interactions [C...N = 3.5277 (19) Å and C—H...N = 147°]. Linking of these tetrameric assemblies through N—H...O [N...O = 3.3026 (19) Å and N—H...O = 143.1 (17)°], N—H...N [N...N = 3.221 (2) Å and N—H...N = 177.9 (17)°] and C—H...O [C...O = 3.5354 (18) Å and C—H...O = 152°] interactions creates the two‐dimensional packing. Recrystallization of the cocrystals from the molten state revealed the formation of 4‐(pyrazine‐2‐carboxamido)benzoic acid, C12H9N3O3, (2), through a transamidation reaction between PZA and p‐ABA. Carboxamide (2) crystallizes in the triclinic space group P with one molecule in the asymmetric unit. Molecules of (2) form a centrosymmetric dimeric homosynthon through an acid–acid O—H...O hydrogen bond [O...O = 2.666 (3) Å and O—H...O = 178 (4)°]. Neighbouring assemblies are connected centrosymmetrically via a C—H...N interaction [C...N = 3.365 (3) Å and C—H...N = 142°] engaging the pyrazine groups to generate a linear chain. Adjacent chains are connected loosely via C—H...O interactions [C...O = 3.212 (3) Å and C—H...O = 149°] to generate a two‐dimensional sheet structure. Closely associated two‐dimensional sheets in both compounds are stacked via aromatic π‐stacking interactions engaging the pyrazine and benzene rings to create a three‐dimensional multi‐stack structure.  相似文献   

19.
The structures of three isomeric compounds, C7H4ClNO4·C8H6N2, of phthalazine with chloro‐ and nitro‐substituted benzoic acid, namely, 3‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (I), 4‐chloro‐2‐nitrobenzoic acid–phthalazine (1/1), (II), and 4‐chloro‐3‐nitrobenzoic acid–phthalazine (1/1), (III), have been determined at 190 K. In the asymmetric unit of each compound, there are two crystallographically independent chloronitrobenzoic acid–phthalazine units, in each of which the two components are held together by a short hydrogen bond between an N atom of the base and a carboxyl O atom. In one hydrogen‐bonded unit of (I) and in two units of (II), a weak C—H...O interaction is also observed between the two components. The N...O distances are 2.5715 (15) and 2.5397 (17) Å for (I), 2.5655 (13) and 2.6081 (13) Å for (II), and 2.613 (2) and 2.589 (2) Å for (III). In both hydrogen‐bonded units of (I) and (II), the H atoms are each disordered over two positions with (N site):(O site) occupancies of 0.35 (3):0.65 (3) and 0.31 (3):0.69 (3) for (I), and 0.32 (3):0.68 (3) and 0.30 (3):0.70 (3) for (II). The H atoms in the hydrogen‐bonded units of (III) are located at the O‐atom sites.  相似文献   

20.
There is a paucity of data concerning the structures of six‐ and seven‐membered tellurium‐ and nitrogen‐containing (Te—N) heterocycles. The title compounds, C8H7NOTe, (I), and C9H9NOTe, (II), represent the first structurally characterized members of their respective classes. Both crystallize with two independent molecules in the asymmetric unit. When compared to their sulfur analogs, they exhibit slightly greater deviations from planarity to accommodate the larger chalcogenide atom, with (II) adopting a pronounced twist‐boat conformation. The C—Te—C angles of 85.49 (15) and 85.89 (15)° for the two independent molecules of (I) were found to be somewhat smaller than those of 97.4 (2) and 97.77 (19)° for the two independent molecules of (II). The C—Te bond lengths [2.109 (4)–2.158 (5) Å] are in good agreement with those predicted by the covalent radii. Intermolecular N—H...O hydrogen bonding in (I) forms centrosymmetric R22(8) dimers, while that in (II) forms chains. In addition, intermolecular Te...O contacts [3.159 (3)–3.200 (3) Å] exist in (I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号