首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
The cocrystallization of adamantane‐1,3‐dicarboxylic acid (adc) and 4,4′‐bipyridine (4,4′‐bpy) yields a unique 1:1 cocrystal, C12H16O4·C10H8N2, in the C2/c space group, with half of each molecule in the asymmetric unit. The mid‐point of the central C—C bond of the 4,4′‐bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O—H...N hydrogen bonds [O...N = 2.6801 (17) Å] and the weaker of which are C—H...O hydrogen bonds [C...O = 3.367 (2) Å]. Alternate adc and 4,4′‐bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through π–π interactions along the c axis to generate two‐dimensional layers. These layers are neatly packed into a stable crystalline three‐dimensional form via weak C—H...O hydrogen bonds [C...O = 3.2744 (19) Å] and van der Waals attractions.  相似文献   

2.
The three title isomers, 4‐, (I), 3‐, (II), and 2‐fluoro‐N′‐(4‐pyridyl)benzamide, (III), all C12H9FN2O, crystallize in the P21/c space group (No. 14) with similar unit‐cell parameters and are isomorphous and isostructural at the primary hydrogen‐bonding level. An intramolecular C—H...O=C interaction is present in all three isomers [C...O = 2.8681 (17)–2.884 (2) Å and C—H...O117–118°], with an additional N—H...F [N...F = 2.7544 (15) Å] interaction in (III). Intermolecular amide–pyridine N—H...N hydrogen bonds link molecules into one‐dimensional zigzag chains [graph set C(6)] along the [010] direction as the primary hydrogen bond [N...N = 3.022 (2), 3.049 (2) and 3.0213 (17) Å]. These are augmented in (I) by C—H...π(arene) and cyclic C—F...π(arene) contacts about inversion centres, in (II) by C—F...F—C interactions [C...F = 3.037 (2) Å] and weaker C—H...π(arene)/C—H...F contacts, and in (III) by C—H...π(arene) and C=O...O=C interactions, linking the alternating chains into two‐dimensional sheets. Typical amide N—H...O=C hydrogen bonds [as C(4) chains] are not present [N...O = 3.438 (2) Å in (I), 3.562 (2) Å in (II) and 3.7854 (16) Å in (III)]; the C=O group is effectively shielded and only participates in weaker interactions/contacts. This series is unusual as the three isomers are isomorphous (having similar unit‐cell parameters, packing and alignment), but they differ in their interactions and contacts at the secondary level.  相似文献   

3.
The structure of the title compound, C9H8N4, comprises non‐planar mol­ecules that associate via pyrimidine N—H?N dimer R(8) hydrogen‐bonding associations [N?N 3.1870 (17) Å] and form linear hydrogen‐bonded chains via a pyrimidine N—H?N(pyridyl) interaction [N?N 3.0295 (19) Å]. The dihedral angle between the two rings is 24.57 (5)°. The structure of the 1:1 adduct with 4‐amino­benzoic acid, C9H8N4·C7H7NO2, exhibits a hydrogen‐bond­ing network involving COOH?N(pyridyl) [O?N 2.6406 (17) Å], pyrimidine N—H?N [N?N 3.0737 (19) and 3.1755 (18) Å] and acid N—H?O interactions [N?O 3.0609 (17) and 2.981 (2) Å]. The dihedral angle between the two linked rings of the base is 38.49 (6)° and the carboxyl­ic acid group binds to the stronger base group in contrast to the (less basic) complementary hydrogen‐bonding site.  相似文献   

4.
In the title compound, C8H12N+·C8HN4O2, the anion and cation lie on a crystallographic mirror plane and form planar ribbons via N—H⋯O [N⋯O = 2.933 (4) Å, H⋯O = 2.01 Å and N—H⋯O = 170°] and N—H⋯N [N⋯N = 3.016 (5) Å, H⋯N = 2.15 Å and N—H⋯N = 169°] hydrogen bonds. The ribbons are further linked via weak C—H⋯O and C—H⋯N hydrogen bonds. In adjacent planes, anions lie opposite cations; π–π interactions (separation a/2 = 3.520 Å) exist between the anions and the cations, and stacks are formed, running along the a axis. The cations are disordered over two interpenetrating sites, with occupancies of 0.833 (5) and 0.167 (5).  相似文献   

5.
Molecules of 2‐(2‐nitrophenylaminocarbonyl)benzoic acid, C14H10N2O5, are linked into centrosymmetric R(8) dimers by a single O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.623 (2) Å and O—H⋯O = 178°] and these dimers are linked into sheets by a single aromatic π–π stacking interaction. The isomeric compound 2‐(4‐nitrophenylaminocarbonyl)benzoic acid crystallizes in two polymorphic forms. In the orthorhombic form (space group P212121 with Z′ = 1, crystallized from ethanol), the mol­ecules are linked into sheets of R(22) rings by a combination of one N—H⋯O hydrogen bond [H⋯O = 1.96 Å, N⋯O = 2.833 (3) Å and N—H⋯O = 171°] and one O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.614 (3) Å and O—H⋯O = 173°]. In the monoclinic form (space group P21/n with Z′ = 2, crystallized from acetone), the mol­ecules are linked by a combination of two N—H⋯O hydrogen bonds [H⋯O = 2.09 and 2.16 Å, N⋯O = 2.873 (4) and 2.902 (3) Å, and N—H⋯O = 147 and 141°] and two O—H⋯O hydrogen bonds [H⋯O = 1.84 and 1.83 Å, O⋯O = 2.664 (3) and 2.666 (3) Å, and O—H⋯O = 166 and 174°] into sheets of some complexity. These sheets are linked into a three‐dimensional framework by a single C—H⋯O hydrogen bond [H⋯O = 2.45 Å, C⋯O = 3.355 (4) Å and C—­H⋯O = 160°].  相似文献   

6.
Molecules of the title compound, C5H6N4O3, are linked into a single three‐dimensional framework by a two‐centre N—H⃛O hydrogen bond [H⃛O = 1.92 Å, N⃛O = 2.785 (2) Å and N—H⃛O = 168°], a two‐centre N—H⃛H hydrogen bond [H⃛N = 2.19 Å, N⃛N = 3.017 (2) Å and N—H⃛N = 157°] and the intermolecular component of an effectively planar three‐centre N—H⃛(O)2 hydrogen bond [H⃛O = 2.03 and 2.31 Å, N⃛O = 2.645 (2) and 2.957 (2) Å, N—H⃛O = 126 and 130°, and O⃛H⃛O = 101°].  相似文献   

7.
In ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–2,2′‐dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O—H?O hydrogen bond [H?O 2.03 Å, O?O 2.775 (2) Å and O—H?O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O—H?N hydrogen bond [H?N 1.96 Å, O?N 2.755 (2) Å and O—H?N, 157°] and one N—H?O hydrogen bond [H?O 2.26 Å, N?O 3.112 (2) Å and N—H?O 164°] forming a cyclic R(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C—H?N contact [H?N 2.31 Å, C?N 2.922 (2) Å and C—H?N 122°].  相似文献   

8.
In the title compound, 4‐iodoanilinium 2‐carboxy‐6‐nitrobenzoate, C6H7IN+·C8H4NO6, the anions are linked by an O—H...O hydrogen bond [H...O = 1.78 Å, O...O = 2.614 (3) Å and O—H...O = 171°] into C(7) chains, and these chains are linked by two two‐centre N—H...O hydrogen bonds [H...O = 1.86 and 1.92 Å, N...O = 2.700 (3) and 2.786 (3) Å, and N—H...O = 153 and 158°] and one three‐centre N—H...(O)2 hydrogen bond [H...O = 2.02 and 2.41 Å, N...O = 2.896 (3) and 2.789 (3) Å, N—H...O = 162 and 105°, and O...H...O = 92°], thus forming sheets con­taining R(6), R(8), R(13) and R(18) rings.  相似文献   

9.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

10.
2‐Amino‐5‐nitro­thia­zole crystallizes from solution in ethanol as a monosolvate, C3H3N3O2S·C2H6O, in which the thia­zole component has a strongly polarized molecular–electronic structure. The thia­zole mol­ecules are linked into centrosymmetric dimers by paired N—H⋯N hydrogen bonds [H⋯N = 2.09 Å, N⋯N = 2.960 (6) Å and N—H⋯N = 169°], and these dimers are linked by the ethanol mol­ecules, via a two‐centred N—H⋯O hydrogen bond [H⋯O = 1.98 Å, N⋯O = 2.838 (5) Å and N—H⋯O = 164°] and a planar asymmetric three‐centred O—H⋯(O)2 hydrogen bond [H⋯O = 2.07 and 2.53 Å, O⋯O = 2.900 (5) and 3.188 (5) Å, O—H⋯O = 169 and 136°, and O⋯H⋯O = 55°], into sheets built from alternating (8) and (38) rings. These sheets are triply interwoven.  相似文献   

11.
In the title compound, [Mn(C8H7O2)2(C12H9N3)], the manganese(II) centre is surrounded by three bidentate chelating ligands, namely, one 2‐(2‐pyridyl)benzimidazole ligand [Mn—N = 2.1954 (13) and 2.2595 (14) Å] and two p‐toluate ligands [Mn—O = 2.1559 (13)–2.2748 (14) Å]. It displays a severely distorted octahedral geometry, with cis angles ranging from 58.87 (4) to 106.49 (5)°. Intermolecular C—H...O hydrogen bonds between the p‐toluate ligands link the molecules into infinite chains, and every two neighbouring chains are further coupled by N—H...O and C—H...O hydrogen bonds between the 2‐(2‐pyridyl)benzimidazole and p‐toluate ligands, leading to an infinite ribbon‐like double‐chain packing mode. The complete solid‐state structure can be described as a three‐dimensional supramolecular framework, stabilized by these intermolecular hydrogen‐bonding interactions and possible C—H...π interactions, as well as stacking interactions involving the 2‐(2‐pyridyl)benzimidazole ligands.  相似文献   

12.
The title compounds, 2‐(4‐bromo­phenyl)‐1,2‐di­hydro­pyrimido­[1,2‐a]­benzimidazol‐4‐(3H)‐one, C16H12Br­N3O, (IVa), and 4‐(4‐methylphenyl)‐3,4‐dihydropyrimido[1,2‐a]benzimidazol‐2‐(1H)‐one, C17H15N3O, (Vb), both form R(8) centrosymmetric dimers via N—H?N hydrogen bonds. The N?N distance is 2.943 (3) Å for (IVa) and 2.8481 (16) Å for (Vb), with the corresponding N—H?N angles being 129 and 167°, respectively. However, in other respects, the supra­molecular structures of the two compounds differ. Both compounds contain different C—H?π interactions, in which the C—H?π(centroid) distances are 2.59 and 2.47 Å for (IVa) and (Vb), respectively (the latter being a short distance), with C—H?π(centroid) angles of 158 and 159°, respectively. The supramolecular structures also differ, with a short Br?O distance of 3.117 (2) Å in bromo derivative (IVa), and a C—H?O interaction with a C?O distance of 3.2561 (19) Å and a C—H?O angle of 127° in tolyl system (Vb). The di­hydro­pyrimido part of (Vb) is disordered, with a ratio of the major and minor components of 0.9:0.1. The disorder consists of two non‐interchangeable envelope conformers, each with an equatorial tolyl group and an axial methine H atom.  相似文献   

13.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

14.
The isomers 2,3‐, (I), 2,4‐, (II), and 2,5‐difluoro‐N‐(4‐pyridyl)benzamide, (III), all with formula C12H8F2N2O, all exhibit intramolecular C—H...O=C and N—H...F contacts [both with S(6) motifs]. In (I), intermolecular N—H...O=C interactions form one‐dimensional chains along [010] [N...O = 3.0181 (16) Å], with weaker C—H...N interactions linking the chains into sheets parallel to the [001] plane, further linked into pairs via C—H...F contacts about inversion centres; a three‐dimensional herring‐bone network forms via C—H...π(py) (py is pyridyl) interactions. In (II), weak aromatic C—H...N(py) interactions form one‐dimensional zigzag chains along [001]; no other interactions with H...N/O/F < 2.50 Å are present, apart from long N/C—H...O=C and C—H...F contacts. In (III), N—H...N(py) interactions form one‐dimensional zigzag chains [as C(6) chains] along [010] augmented by a myriad of weak C—H...π(arene) and O=C...O=C interactions and C—H...O/N/F contacts. Compound (III) is isomorphous with the parent N‐(4‐pyridyl)benzamide [Noveron, Lah, Del Sesto, Arif, Miller & Stang (2002). J. Am. Chem. Soc. 124 , 6613–6625] and the three 2/3/4‐fluoro‐N‐(4‐pyridyl)benzamides [Donnelly, Gallagher & Lough (2008). Acta Cryst. C 64 , o335–o340]. The study expands our series of fluoro(pyridyl)benzamides and augments our understanding of the competition between strong hydrogen‐bond formation and weaker influences on crystal packing.  相似文献   

15.
In the selenium‐containing heterocyclic title compound {systematic name: N‐[5‐(morpholin‐4‐yl)‐3H‐1,2,4‐diselenazol‐3‐ylidene]benzamide}, C13H13N3O2Se2, the five‐membered 1,2,4‐diselenazole ring and the amide group form a planar unit, but the phenyl ring plane is twisted by 22.12 (19)° relative to this plane. The five consecutive N—C bond lengths are all of similar lengths [1.316 (6)–1.358 (6) Å], indicating substantial delocalization along these bonds. The Se...O distance of 2.302 (3) Å, combined with a longer than usual amide C=O bond of 2.252 (5) Å, suggest a significant interaction between the amide O atom and its adjacent Se atom. An analysis of related structures containing an Se—Se...X unit (X = Se, S, O) shows a strong correlation between the Se—Se bond length and the strength of the Se...X interaction. When X = O, the strength of the Se...O interaction also correlates with the carbonyl C=O bond length. Weak intermolecular Se...Se, Se...O, C—H...O, C—H...π and π–π interactions each serve to link the molecules into ribbons or chains, with the C—H...O motif being a double helix, while the combination of all interactions generates the overall three‐dimensional supramolecular framework.  相似文献   

16.
In the title compound, [Mn(C5H2N2O4)(C12H9N3)2]·H2O, the MnII centre is surrounded by three bidentate chelating ligands, namely, one 6‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (or uracil‐5‐carboxylate, Huca2−) ligand [Mn—O = 2.136 (2) and 2.156 (3) Å] and two 2‐(2‐pyridyl)‐1H‐benzimidazole (Hpybim) ligands [Mn—N = 2.213 (3)–2.331 (3) Å], and it displays a severely distorted octahedral geometry, with cis angles ranging from 73.05 (10) to 105.77 (10)°. Intermolecular N—H...O hydrogen bonds both between the Hpybim and the Huca2− ligands and between the Huca2− ligands link the molecules into infinite chains. The lattice water molecule acts as a hydrogen‐bond donor to form double O...H—O—H...O hydrogen bonds with the Huca2− O atoms, crosslinking the chains to afford an infinite two‐dimensional sheet; a third hydrogen bond (N—H...O) formed by the water molecule as a hydrogen‐bond acceptor and a Hpybim N atom further links these sheets to yield a three‐dimensional supramolecular framework. Possible partial π–π stacking interactions involving the Hpybim rings are also observed in the crystal structure.  相似文献   

17.
The structure of the title compound, [U(C14H9N3O2)O2(CH3OH)2]·CH3OH, is the first to be reported for an actinide complex including triazole ligands. The UVI atom exhibits a pentagonal–bipyramidal NO6 coordination environment, involving two axial oxide ligands [U=O = 1.766 (3) and 1.789 (3) Å], four equatorial O atoms [U—O = 2.269 (3)–2.448 (3) Å] from the ligand and the two coordinated methanol molecules, and one equatorial N atom [U—N = 2.513 (4) Å] from the ligand. In the crystal structure, the complex molecules are linked via intermolecular N—H...O and O—H...O hydrogen bonds to form a two‐dimensional structure.  相似文献   

18.
The title complex, [Cu(C12H9N2O)(C2H3O2)(C12H10N2O)], is a neutral CuII complex with a primary N3O2 coordination sphere. The Cu centre coordinates to both a deprotonated and a neutral molecule of N‐phenylpyridine‐2‐carboxamide and also to an acetate anion. The coordination around the metal centre is asymmetric, the deprotonated ligand providing two N donor atoms [Cu—N = 1.995 (2) and 2.013 (2) Å] and the neutral ligand providing one N and one O donor atom to the coordination environment [Cu—N = 2.042 (2) Å and Cu—O = 2.2557 (19) Å], the fifth donor being an O atom of the acetate ion [Cu—O = 1.9534 (19) Å]. The remaining O atom from the acetate ion can be considered as a weak donor atom [Cu—O = 2.789 (2) Å], conferring to the Cu complex an asymmetric octahedral geometry. The crystal structure is stabilized by intermolecular N—H...O, C—H...O and C—H...π interactions.  相似文献   

19.
In the title compound, 2C10H14N4·3C6HF5O, one of the pentafluorophenol molecules resides on a mirror plane bisecting the O...F axis. The components aggregate by N—H...N, N—H...O and O—H...N hydrogen bonds involving equal disordering of the H atoms into molecular ensembles based on a 2:1 pyrazole–phenol cyclic pattern [O...N = 2.7768 (16) Å and N...N = 2.859 (2) Å], crosslinked into one‐dimensional columns via hydrogen bonding between the outer pyrazole groups and additional pentafluorophenol molecules. The latter yields a 1:1 pyrazole–phenol catemer with alternating strong O—H...N [2.5975 (16) Å] and weaker N—H...O [2.8719 (17) Å] hydrogen bonds. This is the first reported molecular adduct of a pentafluorinated phenol and a nitrogen base, and suggests the utility of highly acidic phenols and pyrazoles for developing hydrogen‐bonded cocrystals.  相似文献   

20.
Molecules of the title compounds N2‐(benzoyl­oxy)­benz­ami­dine, C14H12N2O2, (I), N2‐(2‐hydroxy­benzoyl­oxy)­benz­ami­dine, C14H12N2O3, (II), and N2‐benzoyloxy‐2‐hydroxybenzamidine, C14H12N2O3, (III), all have extended chain conformations, with the aryl groups remote from one another. In (I), the mol­ecules are linked into chains by a single N—H⋯N hydrogen bond [H⋯N = 2.15 Å, N⋯N = 3.029 (2) Å and N—H⋯N = 153°] and these chains are linked into sheets by means of aromatic π–π stacking interactions. There is one intramolecular O—H⋯O hydrogen bond in (II), and a combination of one three‐centre N—H⋯(N,O) hydrogen bond [H⋯N = 2.46 Å, H⋯O = 2.31 Å, N⋯N = 3.190 (2) Å, N⋯O = 3.146 (2) Å, N—H⋯N = 138° and N—H⋯O = 154°] and one two‐centre C—H⋯O hydrogen bond [H⋯O = 2.46 Å, C⋯O = 3.405 (2) Å and C—H⋯O = 173°] links the mol­ecules into sheets. In (III), an intramolecular O—H⋯N hydrogen bond and two N—H⋯O hydrogen bonds [H⋯O = 2.26 and 2.10 Å, N⋯O = 2.975 (2) and 2.954 (2) Å, and N—H⋯O = 138 and 163°] link the molecules into sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号