首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2010,10(2):436-443
In the present paper molecular dynamics (MD) simulations have been preformed to investigate the surface melting process and microscopic mechanism of Nb(1 1 0) plane in the atomic scale with a modified analytic embedded atom method (MAEAM). On the basis of the MD relaxation dependence of averaged internal energy and layer structure factor at given temperatures, the melting point of the sample has been estimated to be 2510 K. Then by the above results the Nb(1 1 0) plane melting process has been approximately divided into two stages: first the layer-by-layer premelting phase in the surface region and then a simultaneous abrupt melting transition for the inner layers. According to the variation of the averaged internal energy of the inner atomic layer, the melting latent heat has been calculated and the result is in good agreement with the experimental value. The simulated snapshots of atomic configuration for Nb(1 1 0) plane have indicated that the dynamically microscopic mechanism of melting nucleation during the melting transition.  相似文献   

2.
The adsorption of sulphur on clean reconstructed Au{1 1 0}-(1 × 2) surface was studied using density functional theory (DFT) and quantitative low energy electron diffraction (LEED) calculations. The results show that the sulphur atoms form a (4 × 2) ordered structure which preserves the missing row reconstruction of the clean surface. The sulphur atom is found to adsorb on threefold hollow sites, on the {1 1 1} microfacets that border the trenches of the missing rows.  相似文献   

3.
The initial stage of CdTe growth on silicon has been investigated using angle-resolved photoemission and scanning tunneling microscopy (STM). In order to study initial stage of CdTe on Si, we have desorbed CdTe by annealing at 600 °C so that only one monolayer of Te remains on the Si(1 0 0) substrate. Te/Si(1 0 0)2×1 superstructure has been observed by LEED. Photoemission spectra indicate that Te atoms bond with the Si dangling bond. Atomically resolved STM images reveal that the Te atoms form dimers. It is observed that buckling direction of Te-dimer changes and the dimmers are broken in the site of some dimmer rows. It can be explained that the large lattice mismatch cause the switching of the buckling direction and the breaking of Te-dimer resulted surface relaxation.  相似文献   

4.
《Surface science》2006,600(8):1654-1658
We present a theoretical study of the metallization of Ge(0 0 1)-p(2 × 1) surface which is observed in experimental data. We have considered the connection between thermal fluctuation of this surface structure and its metallic properties. To this end we have performed long-time MD-DFT simulations. The obtained results show that thermal fluctuation of the Ge(0 0 1)-p(2 × 1) structure may cause its metallization which in not necessary connected with a flip-flop motion of dimer atoms. It was shown that the metallization of the Ge(0 0 1)-p(2 × 1) surface takes place when the dimer buckling angle is reduced to around 11°. In the case of our simulations the considered surface system remained in the metallic state for 25% of the simulation time. We have also found that the metallic state of the fluctuating Ge(0 0 1)-p(2 × 1) surface is built up by dangling bonds of the dimer atoms shifted up (Dup) and down (Ddown).  相似文献   

5.
《Applied Surface Science》2005,239(3-4):451-457
Well-ordered ultra-thin Al2O3 films were grown on NiAl (1 1 0) surface by exposing the sample at various oxygen absorption temperatures ranging from 570 to 1100 K at dose rates 6.6 × 10−5 and 6.6 × 10−6 Pa. From the results of low-energy electron diffraction (LEED), Auger electron spectrometer (AES) and X-ray photon spectroscopy (XPS) observations, it was revealed that oxidation mechanism above 770 K is different from well-known two-step process. At high temperature, oxidation and crystallization occurred simultaneously while in two-step process oxidation and crystallization occurred one after another. At high-temperature oxidation well-ordered crystalline oxide can be formed by a single-step without annealing. Well-ordered Al2O3 layer with thickness over 1 nm was obtained in oxygen absorption temperature 1070 K and a dose rate 6.6 × 10−6 Pa at 1200 L oxygen.  相似文献   

6.
The formation and structure of monolayer PdRu/Ru(0 0 0 1) surface alloys and their adsorption properties with respect to deuterium adsorption were investigated by atomic resolution scanning tunneling microscopy and by temperature programmed desorption. Surface alloys, prepared by deposition of up to one monolayer of Pd and flash annealing to 1150 K show (i) negligible loss of Pd by desorption or diffusion into the Ru bulk during this procedure and (ii) dominant phase separation into 2D Pd and Ru islands, in contrast to the random distribution in PtRu/Ru(0 0 0 1) surface alloys [H.E. Hoster, A. Bergbreiter, P.M. Erne, T. Hager, H. Rauscher, R.J. Behm, Phys. Chem. Chem. Phys. 10 (2008) 3812]. 2D short-range order parameters and the abundance of specific adsorption ensembles were evaluated for different Pd contents, effective pair interaction (EPI) energies were derived from Monte Carlo simulations. Deuterium adsorption on Pd monolayer films shows a pronounced weakening of adsorption bond, which is attributed to compressive strain and metal–metal interactions between Pd and underlying Ru atoms (‘vertical ligand effect’). Mixed adsorption ensembles containing both Pd and Ru atoms give rise to D2 desorption in the intermediate temperature regime. The impact of the specific lateral distribution of the two metal species on the chemical surface properties is illustrated by comparison with deuterium adsorption on dispersed PtRu/Ru(0 0 0 1) surface alloys [T. Diemant, H. Rauscher, R.J. Behm, J. Phys. Chem. C 112 (2008) 8381].  相似文献   

7.
We have used coaxial impact-collision ion scattering spectroscopy (CAICISS) and time-of-flight elastic recoil detection analysis (TOF-ERDA) to investigate the adsorption of atomic hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface. It has been found that the saturation coverage of hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface is about 1.7 ML. Upon saturated adsorption of atomic hydrogen, the √3×√3 surface structure changes to the 1×1 structure. The data of the CAICISS measurements have indicated that as a result of the hydrogen adsorption, Si adatoms on the √3×√3 surface move from T4 to on-top sites.  相似文献   

8.
We have investigated the structure and morphology of the InAs(1 1 1)B surface using Low Energy Electron Diffraction (LEED), Scanning Tunneling Microscopy (STM) and Scanning Electron Microscopy (SEM). The surface was prepared by annealing in the presence of an arsenic or atomic hydrogen pressure. A (2 × 2) reconstruction that changes into a (1 × 1) unreconstructed surface after prolonged annealing was observed irrespective of preparation method, while the surface morphology was distinctly different in the two cases. Detailed atomic scale models are proposed to explain the behavior. Deposition of Au aerosol nanoparticles on the sample prior to annealing was found to have no effect on the surface reconstruction. The Au particles were found to sink into the surface.  相似文献   

9.
S.H. Ma  Z.Y. Jiao  Z.X. Yang 《Surface science》2010,604(9-10):817-823
The adsorption of sulfur on Co(0 0 0 1) was studied using density functional theory calculations at coverage from 0.11 ML to 1.0 ML. Calculated results indicate that atomic S favors in hollow sites with bond S–Co dominated at lower coverage and at higher coverage the strong adsorbate S–S interaction leads to the formation of S2 species. It was shown that the adsorption energy generally increases (gets weaker) with the coverage in a near linear fashion for the most stable configurations. In addition, modification of the surface electronic properties has been discussed and some discrepancy are found between our calculations and the findings of O adsorption on Au(1 1 1) and Pt(1 1 1) surfaces.  相似文献   

10.
We have investigated the adsorption of molecular (gaseous) SiO2 on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. The SiO2 molecule is found to be chemisorbed on various sites on the Si surface and the most energetically favourable structure is on top of the dimers. The minimum energy pathways for the various adsorption channels indicate that the reaction is barrierless in all cases. The corresponding vibrational spectrum is also calculated and the adsorbed molecules are, as expected, found to have red-shifted vibrational frequencies. The energetically favourable adsorption sites and adsorption energies are comparable to the results found for SiO.  相似文献   

11.
We present a density-functional theory study addressing the energetics and electronic structure properties of isolated oxygen adatoms at the SrTiO3(0 0 1) surface. Together with a surface lattice oxygen atom, the adsorbate is found to form a peroxide-type molecular species. This gives rise to a non-trivial topology of the potential energy surface for lateral adatom motion, with the most stable adsorption site not corresponding to the one expected from a continuation of the perovskite lattice. With computed modest diffusion barriers below 1 eV, it is rather the overall too weak binding at both regular SrTiO3(0 0 1) terminations that could be a critical factor for oxide film growth applications.  相似文献   

12.
We present vibrational dynamics and thermodynamics for the (1 0 0) surfaces of Cu, Ag, Pd, Pt and Au using a real space approach. The force field for these systems is described by density functional theory. The changes in the vibrational dynamics and thermodynamics from those in bulk are confined mostly to the first-layer. A substantial enhancement of the low-frequency end of the acoustic branch was found and is related to a loosening of the bond at the surface. The thermodynamics of the first-layer also show significant differences (higher heat capacity, lower free energy and higher mean vibrational square amplitudes) from what obtains in bulk. Comparing these results with those calculated using embedded-atom method potentials, we discovered that for Ag(1 0 0) and Cu(1 0 0), the two methods yield very similar results while for Pd(1 0 0), Pt(1 0 0) and Au(1 0 0) there are substantial differences.  相似文献   

13.
The ability to understand and predict the phase diagrams of surface phases from first principles can be valuable for developing processes for growth of epitaxial structures. In the growth of epitaxial oxides on Si (0 0 1), a submonolayer phase of Sr plays a key role. The physical structure for this phase, which has 2 × 3 symmetry and occurs at 1/6 monolayer Sr coverage, was recently elucidated using both first principles theory and diffraction experiments [J.W. Reiner, K.F. Garrity, F.J. Walker, S. Ismail-Beigi, C.H. Ahn, Role of strontium in oxide epitaxy on silicon (0 0 1), Phys. Rev. Lett. 101 (10) (2008) 105503.]. Our approach to understanding the broader Sr/Si phase diagram combines density functional theory with a thermodynamic analysis of the phase equilibrium between a Sr lattice gas and the 2 × 3 structure. We use reflection high energy electron diffraction (RHEED) to experimentally determine the phase diagram, finding good agreement with theoretical predictions.  相似文献   

14.
Karl Jacobi  Yuemin Wang 《Surface science》2009,603(10-12):1600-1604
The interaction of NO with the O-rich RuO2(1 1 0) surface, exposing coordinatively unsaturated O-bridge, O-cus, and Ru-cus atoms, was studied at 300 K by thermal desorption spectroscopy (TDS) and high-resolution electron energy-loss spectroscopy (HREELS). The conclusions are validated by isotope substitution experiments with 18O. During exposure to NO an O···N–O surface group (NO2-cus) is formed with O-cus. Additionally, a smaller number of empty Ru-cus sites are filled by NO-cus. If one warms the sample to 400 K, NO2-cus does not desorb but decomposes into O and NO again, the latter being either released into gas phase or adsorbed as NO-cus. With O-bridge such a surface group is not stable at 300 K. Our experiments further prove that O-cus is more reactive than O-bridge.  相似文献   

15.
E. Demirci  A. Winkler 《Surface science》2010,604(5-6):609-616
Co-adsorption of hydrogen and CO on Cu(1 1 0) and on a bimetallic Ni/Cu(1 1 0) surface was studied by thermal desorption spectroscopy. Hydrogen was exposed in atomic form as generated in a hot tungsten tube. The Ni/Cu surface alloy was prepared by physical vapor deposition of nickel. It turned out that extended exposure of atomic hydrogen leads not only to adsorption at surface and sub-surface sites, but also to a roughening of the Cu(1 1 0) surface, which results in a decrease of the desorption temperature for surface hydrogen. Exposure of a CO saturated Cu(1 1 0) surface to atomic H leads to a removal of the more strongly bonded on-top CO (α1 peak) only, whereas the more weakly adsorbed CO molecules in the pseudo threefold hollow sites (α2 peak) are hardly influenced. No reaction between CO and H could be observed. The modification of the Cu(1 1 0) surface with Ni has a strong influence on CO adsorption, leading to three new, distinct desorption peaks, but has little influence on hydrogen desorption. Co-adsorption of H and CO on the Ni/Cu(1 1 0) bimetallic surface leads to desorption of CO and H2 in the same temperature regime, but again no reaction between the two species is observed.  相似文献   

16.
The magnetic properties of uncovered Fe/ZnSe/GaAs(1 0 0) ultrathin films have been determined in situ by magneto-optical Kerr effect (MOKE). Fe films up to 10 monolayers (ML) thick were deposited on c(2×2) Zn-rich ZnSe/GaAs(0 0 1) surfaces at 180 °C. We have studied the thickness dependence of the in-plane lattice parameter of the Fe films and of the MOKE hysteresis loops in the longitudinal geometry, at 150 K, under magnetic fields up to 0.1 T applied along the [1 1 0] and [1-1 0] directions of the ZnSe(0 0 1). Reflection high energy electron diffraction show that in the low thickness regime the Fe films present an in-plane structural anisotropy characterized by an expansion along the [1 1 0] direction. Hysteretic loops were obtained only starting from ∼5 ML Fe. We found the onset of an uniaxial magnetic anisotropy with [1 1 0] magnetic easy axis at 7 ML Fe.  相似文献   

17.
In thin layered Fe/Co (0 0 1), grown on MgO (0 0 1), both Fe and Co crystallize in the body-centered cubic (BCC) structure, as seen in a series of superlattices where the layer thickness of the components is varied from two to twelve atomic monolayers. These superlattices have novel magnetic properties as observed by magnetization and polarized neutron reflectivity measurements. There is a significant enhancement of the magnetic moments of both Fe and Co at the interfaces. Furthermore, the easy axis of the system changes from [1 0 0] for films of low cobalt content to [1 1 0] for a Co content exceeding 33%. No indication of a uniaxial anisotropy component is found in any of the samples. The first anisotropy constant (K1) of BCC Co is found to be negative with an estimated magnitude of 110 kJ/m3 at 10 K. In all cases, the magnetic moments of Fe and Co have parallel alignment.  相似文献   

18.
Adsorption structure of CO on W and Mo at above ~800 K (β-CO) has been extensively studied in the history of surface science. Most of the previous studies concluded that CO is dissociated in the β-CO, and a tilted structure plays a role as a precursor state of the dissociation. We have recently studied valence band spectra of the β-CO on W(1 1 0), oxygen-precovered W(1 1 0) and Mo(1 1 0) using synchrotron radiation. CO-derived states with binding energies close to those of the 4σ-CO can be observed, implying a non-dissociative chemisorption in this high-temperature state. We suggest that still some additional works need to be done in order to understand adsorption structure of β-CO completely.  相似文献   

19.
We have studied the adsorption and reaction of methanol on the bare and oxygen precovered Cu(1 1 0) surface at 200 K using reflectance difference spectroscopy (RDS). On the bare and fully oxygen covered surface, the sticking coefficient is close to zero. In contrast, on the partially oxygen covered surface, a sticking coefficient close to unity is obtained. This observation suggests a high mobility of methanol on both bare and oxygen covered Cu(1 1 0) and of methoxy on Cu(1 1 0). Two reaction regimes, an oxygen supply limited and an adsorption site limited regime are identified. The transition between these two regimes occurs for an oxygen coverage of about 0.2.  相似文献   

20.
The relaxation and the thermal vibrations of the NaF(100) surface are investigated in the temperature range between 25 K and 230 K by means of low-energy electron diffraction (LEED) and a subsequent I(V) structure analysis based on the tensor LEED approach (TLEED). According to the experiments, the NaF(100) surface is not significantly relaxed and has the ideal truncated bulk structure. The thermal vibrational amplitudes of the ions in the topmost layer are significantly enhanced compared to the bulk by a factor of 1.35 ± 0.15 and are equal within the error-bars for Na+ and F? ions. Moreover, the relaxation and the dynamics of the NaF(100) surface are investigated using periodic density functional theory (DFT) calculations using pseudopotentials. In agreement with the experimental findings, the calculated relaxation of the NaF(100) surface is weak with static shifts of the ions of 0.01 Å to 0.02 Å. In the topmost layer, the Na+ ions are predicted to be slightly inward shifted, whereas the F? ions are outward shifted, in accordance to predictions of previous shell-model calculations. A Born Oppenheimer molecular dynamics (BO-MD) simulation of the dynamics at the NaF(100) surface leads to a smaller enhancement of thermal motions of the ions at the surface compared to the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号