首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The tetrapyridyl ligand bbpya (bbpya=N,N‐bis(2,2′‐bipyrid‐6‐yl)amine) and its mononuclear coordination compound [Fe(bbpya)(NCS)2] ( 1 ) were prepared. According to magnetic susceptibility, differential scanning calorimetry fitted to Sorai’s domain model, and powder X‐ray diffraction measurements, 1 is low‐spin at room temperature, and it exhibits spin crossover (SCO) at an exceptionally high transition temperature of T1/2=418 K. Although the SCO of compound 1 spans a temperature range of more than 150 K, it is characterized by a wide (21 K) and dissymmetric hysteresis cycle, which suggests cooperativity. The crystal structure of the LS phase of compound 1 shows strong N?H???S intermolecular H‐bonding interactions that explain, at least in part, the cooperative SCO behavior observed for complex 1 . DFT and CASPT2 calculations under vacuum demonstrate that the bbpya ligand generates a stronger ligand field around the iron(II) core than its analogue bapbpy (N,N′‐di(pyrid‐2‐yl)‐2,2′‐bipyridine‐6,6′‐diamine); this stabilizes the LS state and destabilizes the HS state in 1 compared with [Fe(bapbpy)(NCS)2] ( 2 ). Periodic DFT calculations suggest that crystal‐packing effects are significant for compound 2 , in which they destabilize the HS state by about 1500 cm?1. The much lower transition temperature found for the SCO of 2 compared to 1 appears to be due to the combined effects of the different ligand field strengths and crystal packing.  相似文献   

2.
A two‐step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3‐CNpy)2][Re(CN)8]}?H2O ( 1 ) (3‐CNpy=3‐cyanopyridine) assembly consisting of cyanido‐bridged FeII‐ReV square grid sheets bonded by Cs+ ions. The presence of two non‐equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non‐covalent interlayer interactions involving Cs+, [ReV(CN)8]3? ions, and 3‐CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin‐transition phenomenon could be tuned by an external pressure giving the room‐temperature range of SCO, as well as by visible‐light irradiation, inducing an efficient recovery of the high‐spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.  相似文献   

3.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

4.
A major challenge is the development of multifunctional metal–organic frameworks (MOFs), wherein magnetic and electronic functionality can be controlled simultaneously. Herein, we rationally construct two 3D MOFs by introducing the redox active ligand tetra(4‐pyridyl)tetrathiafulvalene (TTF(py)4) and spin‐crossover FeII centers. The materials exhibit redox activity, in addition to thermally and photo‐induced spin crossover (SCO). A crystal‐to‐crystal transformation induced by I2 doping has also been observed and the resulting intercalated structure determined. The conductivity could be significantly enhanced (up to 3 orders of magnitude) by modulating the electronic state of the framework via oxidative doping; SCO behavior was also modified and the photo‐magnetic behavior was switched off. This work provides a new strategy to tune the spin state and conductivity of framework materials through guest‐induced redox‐state switching.  相似文献   

5.
The interaction at the molecular level of the spin-crossover (SCO) FeII((3,5-(CH3)2Pz)3BH)2 complex with the Au(111) surface is analyzed by means of rPBE periodic calculations. Our results show that the adsorption on the metallic surface enhances the transition energy, increasing the relative stability of the low spin (LS) state. The interaction indeed is spin-dependent, stronger for the low spin than the high spin (HS) state. The different strength of the Fe ligand field at low and high temperature manifests on the nature, spatial extension and relative energy of the states close to the Fermi level, with a larger metal–ligand hybridization in the LS state. This feature is of relevance for the differential adsorption of the LS and HS molecules, the spin-dependent conductance, and for the differences found in the corresponding STM images, correctly reproduced from the density of states provided by the rPBE calculations. It is expected that this spin dependence will be a general feature of the SCO molecule–substrate interaction, since it is rooted in the different ligand field of Fe site at low and high temperatures, a common hallmark of the FeII SCO complexes. Finally, the states involved in the LIESST phenomenon has been identified through NEVPT2 calculations on a model reaction path. A tentative pathway for the photoinduced LS→HS transition is proposed, that does not involve the intermediate triplet states, and nicely reproduces both the blue laser wavelength required for the activation, and the wavelength of the reverse HS → LS transition.  相似文献   

6.
A neutral mononuclear FeIII complex [FeIII(H‐5‐Br‐thsa‐Me)(5‐Br‐thsa‐Me)]?H2O ( 1 ; H2‐5‐Br‐thsa‐Me=5‐bromosalicylaldehyde methylthiosemicarbazone) was prepared that exhibited a three‐step spin‐crossover (SCO) with symmetry breaking and a 14 K hysteresis loop owing to strong cooperativity. Two ordered intermediate states of 1 were observed, 4HS–2LS and 2HS–4LS, which exhibited reentrant phase‐transition behavior. This study provides a new platform for examining multistability in SCO complexes.  相似文献   

7.
A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2 ? 2 H2O ( 1? 2 H2O), whose precursor βAlatrz, (1,2,4‐triazol‐4‐yl‐propionate) has been tailored from a β‐amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), 57Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two‐step spin crossover (T1/2=230 K and T1/2=235 K, and T1/2=172 K and T1/2=188 K, respectively) is registered for the first time for a 1,2,4‐triazole‐based FeII 1D coordination polymer. The two‐step SCO configuration is observed in a 1:2 ratio of low‐spin/high‐spin in the intermediate phase for a 1D chain. The origin of the stepwise transition was attributed to a distribution of chains of different lengths in 1? 2 H2O after First Order Reversal Curves (FORC) analyses. A detailed DFT analysis allowed us to propose the normal mode assignment of the Raman peaks in the low‐spin and high‐spin states of 1? 2 H2O. Vibrational spectra of 1? 2 H2O reveal that the BF4? anions and water molecules play no significant role on the vibrational properties of the [Fe(βAlatrz)3]2+ polymeric chains, although non‐coordinated water molecules have a dramatic influence on the emergence of a step in the spin transition curve. The dehydrated material [Fe(βAlatrz)3](BF4)2 ( 1 ) reveals indeed a significantly different magnetic behavior with a one‐step SCO which was also investigated.  相似文献   

8.
A novel bispyrazolylpyridine ligand incorporating lateral phenol groups, H4L, has led to an FeII spin‐crossover (SCO) complex, [Fe(H4L)2][ClO4]2 ? H2O ? 2 (CH3)2CO ( 1 ), with an intricate network of intermolecular interactions. It exhibits a 40 K wide hysteresis of magnetization as a result of the spin transition (with T0.5 of 133 and 173 K) and features an unsymmetrical and very rich structure. The latter is a consequence of the coupling between the SCO and the crystallographic transformations. The high‐spin state may also be thermally trapped, exhibiting a very large TTIESST (≈104 K). The structure of 1 has been determined at various temperatures after submitting the crystal to different processes to recreate the key points of the hysteresis cycle and thermal trapping; 200 K, cooled to 150 K and trapped at 100 K (high spin, HS), slowly cooled to 100 K and warmed to 150 K (low spin, LS). In the HS state, the system always exhibits disorder for some components (one ClO4? and two acetone molecules) whereas the LS phases show a relative ≈9 % reduction in the Fe? N bond lengths and anisotropic contraction of the unit cell. Most importantly, in the LS state all the species are always found to be ordered. Therefore, the bistability of crystallographic order–disorder coupled to SCO is demonstrated here experimentally for the first time. The variation in the cell parameters in 1 also exhibits hysteresis. The structural and magnetic thermal variations in this compound are paralleled by changes in the heat capacity as measured by differential scanning calorimetry. Attempts to simulate the asymmetric SCO behaviour of 1 by using an Ising‐like model underscore the paramount role of dynamics in the coupling between the SCO and the crystallographic transitions.  相似文献   

9.
The anionic FeIII complex exhibiting cooperative spin transition with a wide thermal hysteresis near room temperature, K[Fe(5‐Brthsa)2] (5‐Brthsa‐H2=5‐bromosalicylaldehyde thiosemicarbazone), is reported. The hysteresis (Δ=69 K in the first cycle) shows a one‐step transition in heating mode and a two‐step transition in cooling mode. X‐ray structure analysis showed that the coexistence of hydrogen bond and cation–π interactions, as well as alkali metal coordination bonds, to give 2D coordination polymer structure. This result is contrary to previous reports of broad thermal hysteresis induced by coordination bonds of FeII spin crossover coordination polymers (with 1D/3D structures), and by strong intermolecular interactions in the molecular packing through π–π stacking or hydrogen‐bond networks. As a consequence, the importance, or the very good suitability of alkali metal‐based coordination bonds and cation–π interactions for communicating cooperative interactions in spin‐crossover (SCO) compounds must be reconsidered.  相似文献   

10.
The myoglobin (Mb) heme Fe‐O‐N=O and heme Fe‐O‐N=O/2‐nitrovinyl species have been characterized by resonance Raman spectroscopy. In the heme Fe‐O‐N=O species, the bound nitrite ligand is removed by solvent exchange, thus reforming metmyoglobin (metMb). The high‐spin heme Fe‐O‐N=O unit is converted into a low‐spin heme Fe‐O‐N=O/2‐nitrovinyl species that can be reversibly switched between a low‐ and a high‐spin state without removing the bound nitrite ligand, as observed in the case of the heme Fe‐O‐N=O species. This spin‐state change is likely to be accompanied by a general structural rearrangement in the protein‐binding pocket. This example is the first of a globin protein that can reversibly change its metal spin state through an internal perturbation. These findings provide a basis for understanding the structure–function relationship of the spin cross found in other metalloenzymes and FeIII–porphyrin complexes.  相似文献   

11.
The influence of ligands on the spin state of a metal ion is of central importance for bioinorganic chemistry, and the production of base‐metal catalysts for synthesis applications. Complexes derived from [Fe(bpp)2]2+ (bpp=2,6‐di{pyrazol‐1‐yl}pyridine) can be high‐spin, low‐spin, or spin‐crossover (SCO) active depending on the ligand substituents. Plots of the SCO midpoint temperature (T ) in solution vs. the relevant Hammett parameter show that the low‐spin state of the complex is stabilized by electron‐withdrawing pyridyl (“X”) substituents, but also by electron‐donating pyrazolyl (“Y”) substituents. Moreover, when a subset of complexes with halogeno X or Y substituents is considered, the two sets of compounds instead show identical trends of a small reduction in T for increasing substituent electronegativity. DFT calculations reproduce these disparate trends, which arise from competing influences of pyridyl and pyrazolyl ligand substituents on Fe‐L σ and π bonding.  相似文献   

12.
In this study, we show that 1) different isomers of the same mononuclear iron(II) complex give materials with different spin‐crossover (hereafter SCO) properties, and 2) minor modifications of the bapbpy (bapbpy=N6,N6′‐di(pyridin‐2‐yl)‐2,2′‐bipyridine‐6,6′‐diamine) ligand allows SCO to be obtained near room temperature. We also provide a qualitative model to understand the link between the structure of bapbpy‐based ligands and the SCO properties of their iron(II) compounds. Thus, seven new trans‐[Fe{R2(bapbpy)}(NCS)2] compounds were prepared, in which the R2bapbpy ligand bears picoline ( 9 – 12 ), quin‐2‐oline ( 13 ), isoquin‐3‐oline ( 14 ), or isoquin‐1‐oline ( 15 ) substituents. From this series, three compounds ( 12 , 14 , and 15 ) have SCO properties, one of which ( 15 ) occurs at 288 K. The crystal structures of compounds 11 , 12 , and 15 show that the intermolecular interactions in these materials are similar to those found in the parent compound [Fe(bapbpy)(NCS)2] ( 1 ), in which each iron complex interacts with its neighbors through weak N? H ??? S hydrogen bonding and π–π stacking. For compounds 12 and 15 , hindering groups located near the N? H bridges weaken the N? S intermolecular interactions, which is correlated to non‐cooperative SCO. For compound 14 , the substitution is further away from the N? H bridges, and the SCO remains cooperative as in 1 with a hysteresis cycle. Optical microscopy photographs show the strikingly different spatio‐temporal evolution of the phase transition in the noncooperative SCO compound 12 relative to that found in 1 . Heat‐capacity measurements were made for compounds 1 , 12 , 14 , and 15 and fitted to the Sorai domain model. The number n of like‐spin SCO centers per interacting domain, which is related to the cooperativity of the spin transition, was found high for compounds 1 and 14 and low for compounds 12 and 15 . Finally, we found that although both pairs of compounds 11 / 12 and 14 / 15 are pairs of isomers their SCO properties are surprisingly different.  相似文献   

13.
We have added the {ReIVX5} (X=Br, Cl) synthon to a pocket-based ligand to provide supramolecular design using halogen⋅⋅⋅halogen interactions within an FeIII system that has the potential to undergo spin crossover (SCO). By removing the solvent from the crystal lattice, we “switch on” halogen⋅⋅⋅halogen interactions between neighboring molecules, providing a supramolecular cooperative pathway for SCO. Furthermore, changes to the halogen-based interaction allow us to modify the temperature and nature of the SCO event.  相似文献   

14.
Hybrid materials integrated with a variety of physical properties, such as spin crossover (SCO) and fluorescence, may show synergetic effects that find applications in many fields. Herein we demonstrate a promising post‐synthetic approach to achieve such materials by grafting fluorophores (1‐pyrenecarboxaldehyde and Rhodamine B) on one‐dimensional SCO FeII structures. The resulting hybrid materials display expected one‐step SCO behavior and fluorescent properties, in particular showing a coupling between the transition temperature of SCO and the temperature where the fluorescent intensity reverses. Consequently, synergetic effect between SCO and fluorescence is incorporated into materials despite different fluorophores. This study provides an effective strategy for the design and development of novel magnetic and optical materials.  相似文献   

15.
We present herein anionic borate‐based bi‐mesoionic carbene compounds of the 1,2,3‐triazol‐4‐ylidene type that undergo C?N isomerization reactions. The isomerized compounds are excellent ligands for CoII centers. Strong agostic interactions with the “C?H”‐groups of the cyclohexyl substituents result in an unusual low‐spin square planar CoII complex, which is unreactive towards external substrates. Such agostic interactions are absent in the complex with phenyl substituents on the borate backbone. This complex displays a high‐spin tetrahedral CoII center, which is reactive towards external substrates including dioxygen. To the best of our knowledge, this is also the first investigation of agostic interactions through single‐crystal EPR spectroscopy. We conclusively show here that the structure and properties of these CoII complexes can be strongly influenced through interactions in the secondary coordination sphere. Additionally, we unravel a unique ligand rearrangement for these classes of anionic mesoionic carbene‐based ligands.  相似文献   

16.
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal‐to‐metal charge transfer (MMCT) and spin‐crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII‐triazole moiety and generates a mixed‐valence complex {[(Tp4‐Me)FeIII(CN)3]9[FeII4(trz‐ph)6]}?[Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 ; trz‐ph=4‐phenyl‐4H‐1,2,4‐triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4‐Me)FeII(CN)3][(Tp4‐Me)FeIII(CN)3]8 [FeIIIFeII3(trz‐ph)6]}? [Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 a ). Structural and magnetic studies reveal that MMCT can tune the two‐step SCO behavior of 1 into one‐step SCO behavior of 1 a . Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin‐transition materials with accessible multi‐electronic states.  相似文献   

17.
《Comptes Rendus Chimie》2018,21(12):1060-1074
Fundamental aspects of spin crossover (SCO) mechanisms are reviewed through considerations of ligand/crystal field theory, thermodynamics, and modeling of the thermoinduced spin transition in the solid state based on macroscopic–mesoscopic approaches . In particular, we highlight success of thermodynamic models in the simulation of first-order spin transitions with hysteretic behaviors (bistability) and multistep conversions. Bistability properties originate from elastic interactions, the so-called cooperativity between SCO molecules in the crystal packing. Although physical and chemical properties and thermodynamical quantities of noninteracting SCO compounds can be readily injected in macroscopic models, taking cooperativity into account remains problematic. The relationship between phenomenological numerical parameters and experimentally accessible quantities can only be most of the time indirectly established. Recent extensions of these thermodynamical models to grasp SCO properties at the nanoscale and combinations with ab initio numerical methods show that macroscopic models still constitute useful theoretical tools to investigate SCO phenomena. The necessity to further probe the thermomechanical properties of SCO materials is also emphasized.  相似文献   

18.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

19.
Octahedral, six‐coordinate Co2+ can exist in two spin states: S = 3/2 and S = 1/2. The difference in energy between high spin (S = 3/2) and low spin (S = 1/2) is dependent on both the ligand mix and coordination stereochemistry. B3LYP calculations on combinations of neutral imidazole, NH3, and H2O ligands show that low‐spin isomers are stabilized by axial H2O ligands and in structures that also include trans pairs of equatorial NH3 and protonated imidazole ligands, spin crossover structures are predicted from spin state energy differences. Occupied Co d orbitals from the DFT calculations provide a means of estimating effective ligand strength for homoleptic and mixed ligand combinations. These calculations suggest that in a labile biological system, a spin crossover environment can be created. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

20.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号