首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel propeller‐shaped, trigeminal‐ligand‐containing, flexible trinuclear PtII complexes, {[Pt(dien)]3(ptp)}(NO3)6 ( 1 ) and {[Pt(dpa)]3(ptp)}(NO3)6 ( 2 ) (dien: diethylenetriamine; dpa: bis‐(2‐pyridylmethyl)amine; ptp: 6′‐(pyridin‐3‐yl)‐3,2′:4′,3′′‐terpyridine), have been designed and synthesized, and their interactions with G‐quadruplex (G4) sequences are characterized. A combination of biophysical and biochemical assays reveals that both PtII complexes exhibit higher affinity for human telomeric (hTel) and c‐myc promoter G4 sequences than duplex DNA. Complex 1 binds and stabilizes hTel G4 sequence more effectively than complex 2 . Both complexes are found to induce and stabilize either antiparallel or parallel conformation of G4 structures. Molecular docking studies indicate that complex 1 binds into the large groove of the antiparallel hTel G4 structure (PDB ID: 143D) and complex 2 stacks onto the exposed G‐quartet of the parallel hTel G4 structure (PDB ID: 1KF1). Telomeric repeat amplification protocol assays demonstrate that both complexes are good telomerase inhibitors, with IC50 values of (16.0±0.4) μM and (4.20±0.25) μM for 1 and 2 , respectively. Collectively, the results suggest that these propeller‐shaped flexible trinuclear PtII complexes are effective and selective G4 binders and good telomerase inhibitors. This work provides valuable information for the interaction between multinuclear metal complexes with G4 DNA.  相似文献   

2.
In investigating the binding interactions between the human telomeric RNA (TERRA) G‐quadruplex (GQ) and its ligands, it was found that the small molecule carboxypyridostatin (cPDS) and the GQ‐selective antibody BG4 simultaneously bind the TERRA GQ. We previously showed that the overall binding affinity of BG4 for RNA GQs is not significantly affected in the presence of cPDS. However, single‐molecule mechanical unfolding experiments revealed a population (48 %) with substantially increased mechanical and thermodynamic stability. Force‐jump kinetic investigations suggested competitive binding of cPDS and BG4 to the TERRA GQ. Following this, the two bound ligands slowly rearrange, thereby leading to the minor population with increased stability. Given the relevance of G‐quadruplexes in the regulation of biological processes, we anticipate that the unprecedented conformational rearrangement observed in the TERRA‐GQ–ligand complex may inspire new strategies for the selective stabilization of G‐quadruplexes in cells.  相似文献   

3.
Drug binding to human serum albumin (HSA) has been characterized by a spin‐labeling and continuous‐wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin‐binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR‐active nitroxide radicals (spin‐labeled pharmaceuticals (SLPs)) and in a screening approach CW‐EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW‐EPR spectra allow extraction of association constants (KA) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug–protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged.  相似文献   

4.
An explicit DFT modeling of water surroundings on the electron paramagnetic resonance properties of 4‐amino‐2,2,6,6‐tetramethyl‐piperidine‐N‐oxyl (TA) has been performed. A stepwise hydration of TA is accompanied with certain changes in geometrical parameters (bond lengths and angles) and redistribution of partial electric charges in TA. An aqueous cluster of 45 water molecules can be considered as an appropriate model for a complete aqueous shell around TA, although most of the structural and electronic characteristics of TA already converge at about 10 water molecules. Water surroundings induce an increase in electron spin density on the nitrogen atom of the nitroxide fragment due to stabilization of the polar resonance structure > N+?? O? at the expense of less polar structure > N? O?. The water‐induced rise of the isotropic splitting constant aiso, calculated from the contact term of the hyperfine interaction, comprises ΔaisoN2) = 2.2–2.5 G, which is typical of experimental value for TA. There are two contributions to the solvent effect on the aisoN2) value: the redistribution of spin density in the nitroxide fragment (polarity effect) and water‐induced distortions of TA geometry. Microscopic variations in a hydrogen‐bonded water network cause noticeable fluctuations of the splitting constant aisoN2). Calculations of the atomic spin density (σN2) allowed us to compute the splitting constant from the relationship aisoN2) = QσN2, where Q = 36.2 G. A practical advantage of using this relationship is that it gives ‘smoothed’ values of the splitting constant, which are sensitive to the environment polarity but remain tolerant to microscopic fluctuations of the hydrogen‐bonded water network around a spin‐label molecule. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double‐histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol‐specific labelling. However, the non‐covalent CuII coordination approach is vulnerable to low binding‐affinity. Herein, dissociation constants (KD) are investigated directly from the modulation depths of relaxation‐induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low‐ to sub‐μm CuII KDs under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double‐histidine motif for EPR applications even at sub‐μm protein concentrations in orthogonally labelled CuII–nitroxide systems using a commercial Q‐band EPR instrument.  相似文献   

6.
Steady‐state electron paramagnetic resonance (EPR) spectroscopy using nitroxide spin probes has been used to investigate the plasticization of poly(vinyl acetate) and poly(ethyl methacrylate) by carbon dioxide. By varying the CO2 pressure at constant ambient temperature, the glass transition for each polymer could be depressed to 25 °C. This effect has been quantified by a parameter P50G, obtained by plotting the EPR spectral width as a function of CO2 pressure. Certain spin probes showed free volume distribution effects, manifested in the EPR spectra as “double peaks.” Possible reasons for this phenomenon are presented and discussed, and the efficacy of CO2 as a plasticizer is clearly demonstrated by direct comparison with di‐n‐butyl phthalate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2097–2108, 2005  相似文献   

7.
A series of platinum(II) complexes with tridentate ligands was synthesized and their interactions with G‐quadruplex DNA within the c‐myc gene promoter were evaluated. Complex 1 , which has a flat planar 2,6‐bis(benzimidazol‐2‐yl)pyridine (bzimpy) scaffold, was found to stabilize the c‐myc G‐quadruplex structure in a cell‐free system. An in silico G‐quadruplex DNA model has been constructed for structure‐based virtual screening to develop new PtII‐based complexes with superior inhibitory activities. By using complex 1 as the initial structure for hit‐to‐lead optimization, bzimpy and related 2,6‐bis(pyrazol‐3‐yl)pyridine (dPzPy) scaffolds containing amine side‐chains emerge as the top candidates. Six of the top‐scoring complexes were synthesized and their interactions with c‐myc G‐quadruplex DNA have been investigated. The results revealed that all of the complexes have the ability to stabilize the c‐myc G‐quadruplex. Complex 3 a ([PtII L2R ] + ; L2 =2,6‐bis[1‐(3‐piperidinepropyl)‐1H‐enzo[d]imidazol‐2‐yl]pyridine, R =Cl) displayed the strongest inhibition in a cell‐free system (IC50=2.2 μM ) and was 3.3‐fold more potent than that of 1 . Complexes 3 a and 4 a ([PtII L3R ]+; L3 =2,6‐bis[1‐(3‐morpholinopropyl)‐1H‐pyrazol‐3‐yl]pyridine, R =Cl) were found to effectively inhibit c‐myc gene expression in human hepatocarcinoma cells with IC50 values of ≈17 μM , whereas initial hit 1 displayed no significant effect on gene expression at concentrations up to 50 μM . Complexes 3 a and 4 a have a strong preference for G‐quadruplex DNA over duplex DNA, as revealed by competition dialysis experiments and absorption titration; 3 a and 4 a bind G‐quadruplex DNA with binding constants (K) of approximately 106–107 dm3 mol?1, which are at least an order of magnitude higher than the K values for duplex DNA. NMR spectroscopic titration experiments and molecular modeling showed that 4 a binds c‐myc G‐quadruplex DNA through an external end‐stacking mode at the 3′‐terminal face of the G‐quadruplex. Intriguingly, binding of c‐myc G‐quadruplex DNA by 3 b is accompanied by an increase of up to 38‐fold in photoluminescence intensity at λmax=622 nm.  相似文献   

8.
Isoindoline nitroxide‐containing porphyrins were synthesized by the reaction of 5‐phenyldipyrromethane and 5‐(4′‐nitrophenyl)‐dipyrromethane with 5‐formyl‐1,1,3,3‐tetramethylisoindolin‐2‐yloxyl using the Lindsey method. These spin‐labeled porphyrins were further characterized by MS, UV, FTIR, 1H‐NMR, cyclic voltammetry, electron paramagnetic resonance (EPR), and fluorescence spectroscopy. The electrochemical assay demonstrated that these isoindoline nitroxides‐containing porphyrins had similar electrochemical and redox properties as 5‐carboxy‐1,1,3,3‐tetramethylisoindolin‐2‐yloxyl. Electron paramagnetic resonance test exhibited these porphyrins possessed the hyperfine splittings and characteristic spectra of isoindoline nitroxides, with typical nitroxide g‐values and nitrogen isotropic hyperfine coupling constants. Fluorescence spectroscopy revealed that these porphyrins indicated fluorescence suppression characteristic of nitroxide–fluorophore systems. Moreover, their reduced isoindoline nitroxide‐containing porphyrins eliminated the fluorescence suppression and displayed strong fluorescence. Thus, these isoindoline nitroxide‐containing porphyrins may be considered as the potential fluorescent and EPR probes.  相似文献   

9.
Cisplatin is widely used to treat a number of cancers, and its covalent binding to DNA is believed to cause cell death; however, the roles of cisplatin–protein interactions in the mechanisms of action, toxicity, and resistance of the drug largely remain to be elucidated. Here, we investigate the interactions of cisplatin and a native rabbit metallothionein (MT), containing 1.4% zinc and 7.9% cadmium, using nanospray tandem quadrupole time‐of‐flight mass spectrometry (MS) and size‐exclusion high‐performance liquid chromatography with inductively coupled plasma MS. At near‐neutral pH conditions, reactions between cisplatin and MT resulted in the formation of complexes that contained Cd4–Ptn–MT (n = 1–7). While zinc was displaced by cisplatin, both platinum and cadmium were bound to the same MT molecule. This is the first report to provide direct evidence for the co‐binding of cadmium and platinum to MT, which suggests that the mechanism of the binding of cisplatin to the native MT may not be through the displacement of cadmium as previously proposed. A tandem MS investigation into the binding sites of the platinum and cadmium to MT showed platinum‐ and cadmium‐related fragments, such as (PtS2C2H7N)+ and (CdS3C5H17N2)+, demonstrating the platinum–cysteine and cadmium–cysteine binding. In addition, detection of Cd4–Pt7–MT demonstrated more than ten metals bound to a single MT molecule. This finding was extended to the binding of MT with a five‐fold excess of CdCl2. As many as 14 metal atoms (13 cadmium and one zinc) were detected bound to a single MT molecule, the complexes being Cdx–Zn–MT (x = 5–13). The high binding capacity of MT for cadmium and platinum is consistent with the role of MT in reduction of metal toxicity and its involvement in drug resistance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Unlike extensively studied diradicals linked by π‐conjugated systems, only a few studies have investigated weakly coupled diradicals linked by an sp3 carbon atom. Herein, we prepared pyrrolidin‐1‐oxyl–(nitronyl nitroxide)‐dyad 5 and pyrrolidin‐1‐oxyl–iminonitroxide‐dyad 6 . From the observed temperature dependence of the magnetic susceptibility, 5 and 6 were determined to be in singlet ground states with 2Jintra/kB=?35.2 K and ?13.6 K, respectively. From these results and theoretical calculations of related diradicals, the spin‐polarization model counting the small spin density of the sp3 carbon atom could be used as a spin‐prediction model.  相似文献   

11.
12.
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin‐labeled chemical recognition unit for switchable and concomitantly high affinity binding to His‐tagged proteins was synthesized. In combination with an orthogonal site‐directed spin label, this novel spin probe, Proxyl‐trisNTA (P‐trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate‐binding protein, 2) its substrate‐dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site‐specific spin labeling in cell lysates under in‐cell conditions. This approach will open new avenues towards in‐cell EPR.  相似文献   

13.
基于卟啉对癌细胞的特殊亲和作用和哌嗪化合物的抗肿瘤、抗病毒作用,设计并合成了具有哌嗪结构的新型卟啉化合物5,10,15,20-四[4-(4'-乙基哌嗪基)苯基]卟啉(TEPPPH2),其结构经UV-Vis, 元素分析,1H NMR等手段证明。采用UV-Vis光谱和荧光光谱研究了TEPPPH2和小牛胸腺DNA 的相互作用模式和结合机理。实验发现,TEPPPH2能嵌入到DNA的碱基对中,1个小牛胸腺DNA分子对TEPPPH2分子的最大结合数n约为88,结合常数为8.4×106mol•L-1 。TEPPPH2与DNA的结合数和结合常数大于已知的四(4-N-甲基吡啶基)卟啉和Ca/sal-his、Ni/sal–aln型席夫碱抗癌药物。  相似文献   

14.
Polymorphic DNA G‐quadruplex recognition has attracted great interest in recent years. The strong binding affinity and potential enantioselectivity of chiral [Ru(bpy)2(L)]2+ (L=dipyrido[3,2‐a:2′,3′‐c]phenazine, dppz‐10,11‐imidazolone; bpy=2,2′‐bipyridine) prompted this investigation as to whether the two enantiomers, Δ and Λ, can show different effects on diverse structures with a range of parallel, antiparallel and mixed parallel/antiparallel G‐quadruplexes. These studies provide a striking example of chiral‐selective recognition of DNA G‐quadruplexes. As for antiparallel (tel‐Na+) basket G‐quadruplex, the Λ enantiomers bind stronger than the Δ enantiomers. Moreover, the behavior reported here for both enantiomers stands in sharp contrast to B‐DNA binding. The chiral selectivity toward mixed parallel/antiparallel (tel‐K+) G‐quadruplex of both compounds is weak. Different loop arrangements can change chiral complex selectivity for both antiparallel and mixed parallel/antiparallel G‐quadruplex. Whereas both Δ and Λ isomers bind to parallel G‐quadruplexes with comparable affinity, no appreciable stereoselective G‐quadruplex binding of the isomers was observed. In addition, different binding stoichiometries and binding modes for Δ and Λ enantiomers were confirmed. The results presented here indicate that chiral selective G‐quadruplex binding is not only related to G‐quadruplex topology, but also to the sequence and the loop constitution.  相似文献   

15.
In spite of its importance in cell function, targeting DNA is under‐represented in the design of small molecules. A barrier to progress in this area is the lack of a variety of modules that recognize G ? C base pairs (bp) in DNA sequences. To overcome this barrier, an entirely new design concept for modules that can bind to mixed G ? C and A ? T sequences of DNA is reported herein. Because of their successes in biological applications, minor‐groove‐binding heterocyclic cations were selected as the platform for design. Binding to A ? T sequences requires hydrogen‐bond donors whereas recognition of the G‐NH2 requires an acceptor. The concept that we report herein uses pre‐organized N‐methylbenzimidazole (N‐MeBI) thiophene modules for selective binding with mixed bp DNA sequences. The interaction between the thiophene sigma hole (positive electrostatic potential) and the electron‐donor nitrogen of N‐MeBI preorganizes the conformation for accepting an hydrogen bond from G‐NH2. The compound–DNA interactions were evaluated with a powerful array of biophysical methods and the results show that N‐MeBI‐thiophene monomer compounds can strongly and selectively recognize single G ? C bp sequences. Replacing the thiophene with other moieties significantly reduces binding affinity and specificity, as predicted by the design concept. These results show that the use of molecular features, such as sigma‐holes, can lead to new approaches for small molecules in biomolecular interactions.  相似文献   

16.
We introduce the synthesis and in‐depth characterization of platinum(II)‐crosslinked single‐chain nanoparticles (PtII‐SCNPs) to demonstrate their application as a recyclable homogeneous catalyst. Specifically, a linear precursor copolymer of styrene and 4‐(diphenylphosphino)styrene was synthesized via nitroxide‐mediated polymerization. The triarylphosphine ligand moieties along the backbone allowed for the intramolecular crosslinking of single chains via the addition of [Pt(1,5‐cyclooctadiene)Cl2] in dilute solution. The successful formation of well‐defined PtII‐SCNPs was evidenced by size exclusion chromatography, dynamic light scattering, nuclear magnetic resonance (1H, 31P{1H}, 195Pt), and diffusion‐ordered spectroscopy. Finally, the activity of the PtII‐SCNPs as homogeneous, yet recyclable catalyst was successfully demonstrated using the example of the amination of allyl alcohol.  相似文献   

17.
X‐ray absorption near the iron K edge (XANES) was used to investigate the characteristics of temperature‐induced low‐spin‐to‐high‐spin change (SC) in metallo‐supramolecular polyelectrolyte amphiphile complexes (PAC) containing FeN6 octahedra attached to two or six amphiphilic molecules. Compared to the typical spin‐crossover material Fe(phen)2(NCS)2 XANES spectra of PAC show fingerprint features restricted to the near‐edge region which mainly measures multiple scattering (MS) events. The changes of the XANES profiles during SC are thus attributed to the structure changes due to different MS path lengths. Our results can be interpreted by a uniaxial deformation of FeN6 octahedra in PAC. This is in agreement with the prediction that SC is originated by a structural phase transition in the amphiphilic matrix of PAC, but in contrast to Fe(phen)2(NCS)2, showing the typical spin crossover being associated with shortening of all the metal–ligand distances.  相似文献   

18.
A potentially biocompatible class of spin‐labeled macromolecules, spin‐labeled (SL) heparins, and their use as nuclear magnetic resonance (NMR) signal enhancers are introduced. The signal enhancement is achieved through Overhauser‐type dynamic nuclear polarization (DNP). All presented SL‐heparins show high 1H DNP enhancement factors up to E=?110, which validates that effectively more than one hyperfine line can be saturated even for spin‐labeled polarizing agents. The parameters for the Overhauser‐type DNP are determined and discussed. A striking result is that for spin‐labeled heparins, the off‐resonant electron paramagnetic resonance (EPR) hyperfine lines contribute a non‐negligible part to the total saturation, even in the absence of Heisenberg spin exchange (HSE) and electron spin‐nuclear spin relaxation (T1ne). As a result, we conclude that one can optimize the use of, for example, biomacromolecules for DNP, for which only small sample amounts are available, by using heterogeneously distributed radicals attached to the molecule.  相似文献   

19.
The anchoring of small‐sized WN (tungsten nitride) nanoparticles (NPs) with good dispersion on carbon nanotubes (CNTs) offers an effective means of obtaining promising materials for use in electrocatalysis. Herein, an effective method based on grinding treatment followed by a nitridation process is proposed to realize this goal. In the synthesis, a solution containing H4[SiO4(W3O9)4] (SiW12) and CNTs modified with polyethylenimine (PEI‐CNTs) was ground to dryness. Small‐sized WN NPs were anchored onto the CNTs with good dispersion after calcination under NH3. Under hydrothermal assembly conditions (absence of grinding), WN particles of larger size and with inferior dispersion were obtained, demonstrating the important role of the grinding process. The benefit of the small‐sized WN has been demonstrated by using WN/CNTs as a support for Pt to catalyze the methanol electro‐oxidation reaction. The mass activity of Pt‐WN/CNTs‐G‐70 (where G denotes the grinding treatment, and 70 is the loading amount (%) of WN in the WN/CNTs) was evaluated as about 817 mA mg?1Pt, better that those of commercial Pt/C (340 mA mg?1Pt) and Pt/CNTs (162 mA mg?1Pt). The Pt‐WN/CNTs‐G also displayed good CO tolerance. In contrast, Pt‐WN/CNTs prepared without the grinding process displayed an activity of 344 mA mg?1Pt, verifying the key role of grinding treatment in the preparation of WN/CNTs with good co‐catalytic effect.  相似文献   

20.
DNA as a medium for electron transfer has been widely used in photolytic processes but is seldom applied to dark reaction of CO2 reduction. A G‐quadruplex nanowire (tsGQwire) assembled by guanine tetranucleotides was used to host several metal complexes and further to mediate electron transfer processes in the electrochemical reduction of CO2 catalyzed by these complexes. The tsGQwire modified electrode increased the Faradaic efficiency of cobalt(II) phthalocyanine (CoIIPc) 2.5‐folds for CO production than bare CoIIPc electrode, with a total current density of 11.5 mA cm?2. Comparable Faradaic efficiency of HCOOH production was achieved on tsGQwire electrode when the catalytic center was switched to a GQ targeting Ru complex. The high efficiency and selectivity of electrocatalytic CO2 reduction was attributed to the unique binding of metal complexes on G‐quadruplex and electron transfer mediated by GQ nanowire to achieve efficient redox cycling of catalytic centers on the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号