首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covalent attachment of a carbazole fluorophore to an oxazine photochrome permits the reversible activation of fluorescence under optical control. Ultraviolet irradiation with a pulsed laser opens the oxazine ring to shift bathochromically the absorption of the carbazole component. Concomitant visible illumination excites selectively the carbazole fluorophore of the photochemical product to produce fluorescence. The photogenerated and fluorescent species reverts spontaneously on a submicrosecond timescale to the initial nonemissive state of the carbazole–oxazine dyad. The photochemical and photophysical properties engineered into this particular molecular switch allow the convenient monitoring of plasmonic effects on photochemical reactions with fluorescence measurements. In close proximity to silver nanoparticles, visible illumination with a continuous‐wave laser also results in fluorescence activation. The metallic nanostructures enable the two‐photon excitation of the oxazine component to induce the photochromic transformation and then facilitate the one‐photon excitation of the photochemical product to generate fluorescence. Thus, these operating principles offer the opportunity to avoid altogether the need of pulsed ultraviolet irradiation to trigger the photochromic transformation and, instead, allow fluorescence activation with a single visible source operating at low illumination power.  相似文献   

2.
Controlling the interaction of polarization light with an asymmetric nanostructure such as a metal/semiconductor heterostructure provides opportunities for tuning surface plasmon excitation and near‐field spatial distribution. However, light polarization effects on interfacial charge transport and the photocatalysis of plasmonic metal/semiconductor photocatalysts are unclear. Herein, we reveal the polarization dependence of plasmonic charge separation and spatial distribution in Au/TiO2 nanoparticles under 45° incident light illumination at the single‐particle level using a combination of photon‐irradiated Kelvin probe force microscopy (KPFM) and electromagnetic field simulation. We quantitatively uncover the relationship between the local charge density and polarization angle by investigating the polarization‐dependent surface photovoltage (SPV). The plasmon‐induced photocatalytic activity is enhanced when the polarization direction is perpendicular to the Au/TiO2 interface.  相似文献   

3.
We demonstrate the use of two different wavelength ranges of excitation light as inputs to remotely trigger the responses of the self‐assembled DNA devices (D‐OR). As an important feature of this device, the dependence of the readout fluorescent signals on the two external inputs, UV excitation for 1 min and/or near infrared irradiation (NIR) at 800 nm fs laser pulses, can mimic function of signal communication in OR logic gates. Their operations could be reset easily to its initial state. Furthermore, these DNA devices exhibit efficient cellular uptake, low cytotoxicity, and high bio‐stability in different cell lines. They are considered as the first example of a photo‐responsive DNA logic gate system, as well as a biocompatible, multi‐wavelength excited system in response to UV and NIR. This is an important step to explore the concept of photo‐responsive DNA‐based systems as versatile tools in DNA computing, display devices, optical communication, and biology.  相似文献   

4.
吸附色素蛋白与纳米银粒子间的光诱导电子传递   总被引:1,自引:0,他引:1  
采用表面增强拉曼光谱研究了吸附态微过氧化物酶和细胞色素c的光诱导还原.结果表明,吸附于粗糙银电极表面的过氧化物酶和细胞色素c在413nm激光连续照射下被部分还原.光诱导还原可归因于电极表面纳米银粒子的定域表面等离子体吸收使得自由电子受激,受激电子进而转移进入吸附分子空轨道,导致吸附蛋白质的还原.  相似文献   

5.
Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ>515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion.  相似文献   

6.
Surface‐enhanced resonance Raman scattering (SERRS) is not realized for most molecules of interest. Here, we developed a new SERRS platform for the fast and sensitive detection of 2,4,6‐trinitrotoluene (TNT), a molecule with low Raman cross section. A cationic surfactant, cetylpyridinium chloride (CPC) was modified on the surface of silver sols (CP‐capped Ag). CPC not only acts as the surface‐seeking species to trap sulfite‐sulfonated TNT, but also undergoes complexation with it, resulting in the presence of two charge‐transfer bands at 467 and 530 nm, respectively. This chromophore absorbs the visible light that matches with the incident laser and plasmon resonance of Ag sols by the use of a 532.06 nm laser, and offered large resonance Raman enhancement. This SERRS platform evidenced a fast and accurate detection of TNT with a detection limit of 5×10?11 M under a low laser power (200 μW) and a short integration time (3 s). The CP‐capped Ag also provides remarkable sensitivity and reliable repeatability. This study provides a facile and reliable method for TNT detection and a viable idea for the SERS detection of various non‐resonant molecules.  相似文献   

7.
Different cell membrane domains play different roles in many cell processes, and the discrimination of these domains is of considerable importance for the elucidation of cellular functions. However, the strategies available for distinguishing these cell membrane domains are limited. A novel technique called plasmon coupling enhanced micro-spectroscopy and imaging to discriminate basal and lateral membrane domains of a single cell combines the application of an additional plasmonic silver film for surface plasmon (SP) excitation to selectively excite and enhance the basal membranes in the near-field with directional enhanced microscopic imaging and spectroscopy. The SP and critical evanescent fields are induced upon excitation through a silver-coated semitransparent coverslip at the surface plasmon resonance and critical angles, respectively. The basal and lateral membrane domains located within the SP and critical evanescent fields can be selectively excited and distinguished by adjusting the incident angle of laser irradiation. Moreover, the brighter images and more intense spectra of membrane-targeting fluorescence-Raman probes under directional excitation than in conventional EPI mode allow clear identification of the membrane domains.  相似文献   

8.
An LIF detector was integrated into a CE system based on silver mirror coating detection window and small‐angle optical deflection from collinear configuration. For this detection scheme, the incident light beam was focused on capillary through the edge of a lens, resulting in a small deflection angle that deviated 18° from the collinear configuration. Meanwhile, the excitation light and emitted fluorescence were effectively reflected by silver mirror coating at the detection window. The fluorescence was collected through the center of the same lens and delivered to a PMT in the vertical direction. In contrast to conventional collinear LIF detection systems, the fluorescence intensity was greatly enhanced and the background level was significantly eliminated. FITC and FITC‐labeled amino acids were used as model analytes to evaluate the performance with respect to design factors of this system. The limit LOD was estimated to be 0.5 pM for FITC (S/N = 3), which is comparable to that of optimized confocal LIF systems. All the results indicate that the proposed detection scheme will be promising for development of sensitive and low‐cost CE system.  相似文献   

9.
Charge transfer (CT) resonance mechanisms of 2,2′‐bipyridine (2,2′‐BiPy), 2,4′‐bipyridine (2,4′‐BiPy), and 4,4′‐bipyridine (4,4′‐BiPy) on silver nanoparticle surfaces have been comparatively investigated by means of surface‐enhanced Raman scattering (SERS) at the excitation wavelengths of 457, 514, 633, and 785 nm. A combination of the electromagnetic (EM) and charge transfer (CT) contributions should affect the SERS intensities for the bipyridine compounds adsorbed on silver nanoparticle surfaces. The CT resonance is assumed to occur in dissimilar ways for the bipyridine compounds, as evidenced from their different excitation‐wavelength‐dependent SERS enhancement factors. Ab initio density functional theory (DFT) calculations at the level of B3LYP/LANL2DZ have been carried out for the bipyridine‐Ag complexes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A variety of fluoroalkyl end‐capped oligomers/silver nanocomposites were prepared by the reactions of silver ions with poly(methylhydrosiloxane) in the presence of fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide cooligomer containing poly(dimethylsiloxane) segments in organic media such as toluene and 1,2‐ dichloroethane. These fluorinated oligomers/silver nanocomposites thus obtained were found to exhibit clear plasmon absorption bands around 420 nm related to the formation of silver nanoparticles. In particular, these composites could display narrow plasmon absorptions around 420 nm in toluene by the addition of trioctylamine (TOA). On the other hand, the corresponding non‐fluorinated N‐(1,1‐ dimethyl‐3‐oxobutyl)acrylamide oligomer was not able to afford such a plasmon absorption under similar conditions. These fluorinated oligomers/silver nanocomposites in organic media have been found to be stable for more than 10 days. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements showed that silver nanoparticles could be effectively encapsulated into fluorinated oligomeric aggregate cores to afford colloidal stable fluorinated oligomers/silver nanocomposites. Fluorinated oligomers/silver nanocomposites were also applied to the surface modification of traditional organic polymers such as polystyrene (PSt) and poly(methyl methacrylate) (PMMA) to exhibit not only a good oleophobicity imparted by fluorine but also a higher surface antibacterial activity related to the silver nanoparticles on their surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Summary: The first examples of the dye‐coated semi‐conducting polymer nanoparticles as well as experiments to demonstrate the excitation energy transfer from the excited chromophor of the nanoparticle to the fluorescent dye are described. We have demonstrated that the blue fluorescence of the dye‐coated polyfluorene nanoparticles is only slightly quenched after dye deposition. However, a new emission band of the surface‐bound dye (Rhodamine 6G or Rhodamine TM) appears in the wavelength region of 530–600 nm. These results clearly indicate an effective excitation energy transfer from the excited PF chromophores to the fluorescent dye.

Emission spectra of PF2/6 nanoparticle dispersion and of Rhodamine 6G‐coated nanoparticle dispersion.  相似文献   


12.
We report a powerful strategy for activation of C−H bonds to produce polysulfonamides by an atom‐economical and green method using iridium‐catalyzed direct C−H amidation polymerization (DCAP). After screening various directing groups, additives, silver salts, concentrations, and temperatures to optimize DCAP, high‐molecular‐weight (up to 149 kDa) and defect‐free polysulfonamides were synthesized from various bis‐sulfonyl azides. Although these polymers do not have conventional fluorescent conjugated cores, they emit blue light with large Stokes shifts and high quantum yields upon photoexcitation owing to an excited‐state intramolecular proton‐transfer process.  相似文献   

13.
We demonstrate that commercially available unmodified carbocyanine dyes such as Cy5 (usually excited at 633 nm) can be used as efficient reversible single-molecule optical switch, whose fluorescent state after apparent photobleaching can be restored at room temperature upon irradiation at shorter wavelengths. Ensemble photobleaching and recovery experiments of Cy5 in aqueous solution irradiating first at 633 nm, then at 337, 488, or 532 nm, demonstrate that restoration of absorption and fluorescence strongly depends on efficient oxygen removal and the addition of the triplet quencher beta-mercaptoethylamine. Single-molecule fluorescence experiments show that individual immobilized Cy5 molecules can be switched optically in milliseconds by applying alternating excitation at 633 and 488 nm between a fluorescent and nonfluorescent state up to 100 times with a reliability of >90% at room temperature. Because of their intriguing performance, carbocyanine dyes volunteer as a simple alternative for ultrahigh-density optical data storage. Measurements on single donor/acceptor (tetramethylrhodamine/Cy5) labeled oligonucleotides point out that the described light-driven switching behavior imposes fundamental limitations on the use of carbocyanine dyes as energy transfer acceptors for the study of biological processes.  相似文献   

14.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   

15.
The fundamental understanding of the subtle interactions between molecules and plasmons is of great significance for the development of plasmon‐enhanced spectroscopy (PES) techniques with ultrahigh sensitivity. However, this information has been elusive due to the complex mechanisms and difficulty in reliably constructing and precisely controlling interactions in well‐defined plasmonic systems. Herein, the interactions in plasmonic nanocavities of film‐coupled metallic nanocubes (NCs) are investigated. Through engineering the spacer layer, molecule–plasmon interactions were precisely controlled and resolved within 2 nm. Efficient energy exchange interactions between the NCs and the surface within the 1–2 nm range are demonstrated. Additionally, optical dressed molecular excited states with a huge Lamb shift of ≈7 meV at the single‐molecule (SM) level were observed. This work provides a basis for understanding the underlying molecule–plasmon interaction, paving the way for fully manipulating light–matter interactions at the nanoscale.  相似文献   

16.
Ag nanoplates, as two‐dimensional plasmonic nanostructures, have attracted intensive attention due to their strong shape‐dependent optical properties and related applications. Here parallel face‐exposed Ag nanoplates vertically grown on micro‐hemisphere surfaces have been achieved by firstly electrodepositing the micro‐hemispheres assembled by Ag nanoplates, whose planar surfaces are stuck together, on indium tin oxide substrates, and then Ostwald ripening the as‐electrodeposited micro‐hemispheres in water. The sizes of the nanoplates and the gaps between the neighboring nanoplates have been tailored by tuning the Ostwald‐ripening duration, so that the SERS activity of the micro‐hemispheres has been remarkably improved. The improved SERS activity can be well explained by our systematic finite‐element simulation. Therefore, Ostwald ripening offers a route to the synthesis of Ag nanoplates, and the optimization of plasmon coupling and SERS activity of nanostructure‐assembled systems.  相似文献   

17.
A novel, highly stable photochromic dyad 3 based on a perylene bisimide (PBI) fluorophore and a diarylethene (DAE) photochrome was synthesized and the optical and photophysical properties of this dyad were studied in detail by steady‐state and time‐resolved ultrafast spectroscopy. This photochromic dyad can be switched reversibly by UV‐light irradiation of its ring‐open form 3 o leading to the ring‐closed form 3 c , and back reaction of 3 c to 3 o by irradiation with visible light. Solvent‐dependent fluorescence studies revealed that the emission of ring‐closed form 3 c is drastically quenched in solvents of medium (e.g., chloroform) to high (e.g., acetone) polarities, while the emission of the ring‐open form 3 o is appreciably quenched only in highly polar solvents like DMF. The strong fluorescence quenching of 3 c is attributed to a photoinduced electron‐transfer (PET) process from the excited PBI unit to ring‐closed DAE moiety, as this process is thermodynamically highly favorable with a Gibbs free energy value of ?0.34 eV in dichloromethane. The electron‐transfer mechanism for the fluorescence quenching of ring‐closed 3 c is substantiated by ultrafast transient measurements in dichloromethane and acetone, revealing stabilization of charge‐separated states of 3 c in these solvents. Our results reported here show that the new photochromic dyad 3 has potential for nondestructive read‐out in write/read/erase fluorescent memory systems.  相似文献   

18.
Five isomorphic fluorescent uridine mimics have been subjected to two‐photon (2P) excitation analysis to investigate their potential applicability as non‐perturbing probes for the single‐molecule detection of nucleic acids. We find that small structural differences can cause major changes in the 2P excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both thiophene‐modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure‐photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications.  相似文献   

19.
Spectral and kinetic characteristics of photolysis products in methanol of the photobifunctional compound, whose molecule contains the photochromic spironaphthopyran fragment as well as the hydroxynaphthylmethylenimine fragment in which intramolecular proton transfer can occur in the ground and excited states of the molecule, were studied by the method of nanosecond laser photolysis with excitation with light of wavelengths 337, 430, and 470 nm. The relative quantum yields of the formation of different photoproducts and their kinetic characteristics were measured. The dependence of the relative yield of the photoproducts of different nature on the wavelength of excitation light was revealed.  相似文献   

20.
The photochromic ring closure in diarylethylene was studied by femtosecond laser spectroscopy. The absorption spectrum of the initial excited state under pulse excitation at 305 nm was observed. The kinetic scheme of transitions from the initial excited state to the closed-ring isomer as the final product is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号