首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monomer 5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine was satisfactory obtained through the heterocoupling reaction of 5‐ethynyl‐N,N‐dimethylnaphthalen‐1‐amine and 4‐(5‐iodo‐1‐naphthyl)‐2‐methyl‐3‐butyn‐2‐ol catalyzed by a palladium–copper system, followed by acetone elimination. Poly{5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine} was obtained through the reaction of the acetylene monomer with homogeneous rhodium and palladium catalyst complexes. The structure of the polymers always showed a trans–cisoidal chain configuration on the basis of IR and NMR spectra. Moreover, only for the rhodium catalyst complex in methanol was a dimeric product isolated in a very low yield, having a conjugated terminal ene–yne structure, which permitted the consideration of a metallated chain‐transfer intermediate in the polymer propagation. The mass determination of the polymers, by osmometry and gel permeation chromatography techniques, showed low average molecular weights. The kinetics of the catalyzed polymerization were analyzed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2038–2047, 2007  相似文献   

2.
2‐Ethynyl‐DNA was developed as a potential DNA‐selective oligonucleotide analog. The synthesis of 2′‐arabino‐ethynyl‐modified nucleosides was achieved starting from properly protected 2′‐ketonucleosides by addition of lithium (trimethylsilyl)acetylide followed by reduction of the tertiary alcohol. After a series of protecting‐group manipulations, phosphoramidite building blocks suitable for solid‐phase synthesis were obtained. The synthesis of oligonucleotides from these building blocks was successful when a fast deprotection scheme was used. The pairing properties of 2′‐arabino‐ethynyl‐modified oligonucleotides can be summarized as follows: 1) The 2′‐arabino‐ethynyl modification of pyrimidine nucleosides leads to a strong destabilization in duplexes with DNA as well as with RNA. The likely reason is that the ethynyl group sterically influences the torsional preferences around the glycosidic bond leading to a conformation not suitable for duplex formation. 2) If the modification is introduced in purine nucleosides, no such influence is observed. The pairing properties are not or only slightly changed, and, in some cases (deoxyadenosine homo‐polymers), the desired stabilization of the pairing with a DNA complementary strand and destabilization with an RNA complement is observed. 3) In oligonucleotides of alternating deoxycytidine‐deoxyguanosine sequence, the incorporation of 2′‐arabino‐ethynyl deoxyguanosine surprisingly leads to the formation of a left‐handed double helix, irrespective of salt concentration. The rationalization for this behavior is that the ethynyl group locks such duplexes in a left‐handed conformation through steric blockade.  相似文献   

3.
Described is the development of a new class of bis(cyclometalated) ruthenium(II) catalyst precursors for C? C coupling reactions between alkene and alkyne substrates. The complex [(cod)Ru(3‐methallyl)2] reacts with benzophenone imine or benzophenone in a 1:2 ratio to form bis(cyclometalated) ruthenium(II) complexes ( 1 ). The imine‐ligated complex 1 a promoted room‐temperature coupling between acrylic esters and amides with internal alkynes to form 1,3‐diene products. A proposed catalytic cycle involves C? C bond formation by oxidative cyclization, β‐hydride elimination, and C? H bond reductive elimination. This RuII/RuIV pathway is consistent with the observed catalytic reactivity of 1 a for mild tail‐to‐tail methyl acrylate dimerization and for cyclobutene formation by [2+2] norbornene/alkyne cycloaddition.  相似文献   

4.
Photoreactive particle was prepared by graft copolymerization of 1,9‐nonandioldimethacrylate (NDMA) onto deproteinized natural rubber (DPNR) particles in latex stage. First, NDMA was mixed with α‐cyclodextrin (α‐CD) as a coupling agent to form an inclusion complex to stabilize a carbon–carbon double bond of NDMA as a bifunctional monomer. Second, the inclusion complex was graft‐copolymerized onto natural rubber (NR) in latex stage with potassium persulfate (KPS) as an initiator, after deproteinization with urea in the presence of surfactant. A terminal vinyl group of NDMA was used for the graft copolymerization, while the other remained in the resulting polymer, due to the coupling effect of the α‐CD. The products, after washing α‐CD out, were characterized by FTIR, X‐ray diffraction (XRD), 1H NMR and solid‐state 13C NMR measurements. The amount of residual carbon–carbon double bond after graft copolymerization was investigated in relation to the amount of rubber and reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4111–4118, 2009  相似文献   

5.
A cobalt‐catalyzed dual annulation reaction for the synthesis of variously substituted indenoisoquinolinones from 2‐bromobenzaldehydes, amines, and methyl 2‐(ethynyl)benzoates has been developed. This method could also be applied to the synthesis of an array of highly functionalized bioactive indenoisoquinolinones and their derivatives. A possible mechanism of the cobalt catalysis is proposed, involving imine formation from bromobenzaldehyde and the amine, followed by a series of oxidative addition, alkyne insertion, cyclization reactions, and carbon–carbon double‐bond migration. The regioselective alkyne insertion plays an important role for the success of the second annulation.  相似文献   

6.
The synthesis of 2‐ethynyl‐9‐substituted carbazole and 3‐ethynyl‐9‐substituted carbazole monomers containing first‐generation chiral and achiral dendritic (i.e., minidendritic) substituents, 2‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (2ECz), 3‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (3ECz), 2‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (2ECz*), and 3‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (3ECz*), is presented. All monomers were polymerized and copolymerized by stereospecific polymerization to produce cis‐transoidal soluble stereoisomers. A structural analysis of poly(2ECz), poly(2ECz*), poly(3ECz), poly(3ECz*), poly(2ECz*‐co‐2ECz), and poly(3ECz*‐co‐3ECz) by a combination of techniques, including 1H NMR, ultraviolet–visible, and circular dichroism spectroscopy, thermal optical polarized microscopy, and X‐ray diffraction experiments, demonstrated that these polymers had a helical conformation that produced cylindrical macromolecules exhibiting chiral and achiral nematic phases. Individual chains of these cylindrical macromolecules were visualized by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3509–3533, 2002  相似文献   

7.
The reaction of arylboronic acids with 1,6‐enynes that contain an allylic ether moiety is catalyzed by a rhodium(I) complex to produce cyclopentanes with a tetrasubstituted exo olefin and a pendant vinyl group. The reaction is initiated by the regioselective addition of an arylrhodium(I) species to the carbon–carbon triple bond of the 1,6‐enyne. The resulting alkenylrhodium(I) compound subsequently undergoes intramolecular carborhodation of the allylic double bond in a 5‐exo‐trig mode. β Elimination of the methoxy group affords the cyclization product and the catalytically active methoxorhodium(I) species. The use of alkyl Grignard reagents instead of arylboronic acids as organometallic nucleophiles was also examined.  相似文献   

8.
A novel, highly enantio‐ and diastereoselective synthesis of 1‐boryl‐2,3‐disubstituted cyclopropanes has been developed by means of the cyclopropanation of alkenylboronates with ethyl diazoacetate in the presence of catalytic amounts of a chiral copper(I) complex. The products can also be directly accessed from alkynes through an operationally simple, sequential hydroboration–cyclopropanation protocol. The resulting enantioenriched 1‐boryl‐2,3‐disubstituted cyclopropanes are versatile synthetic intermediates that undergo further transformations at the carbon–boron bond.  相似文献   

9.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Methoxy‐substituted 1,6‐enynes react with arylboronic acids in the presence of a rhodium(I) complex to give arylated cyclization products. This occurs by a multi‐step mechanism consisting of rhodium/boron transmetalation, intermolecular carborhodation, intramolecular carborhodation, β‐hydride elimination, hydrorhodation, and β‐oxygen elimination. A shift of the position of a carbon–carbon double bond is observed, suggesting that the β‐hydride elimination/hydrorhodation process is repeatedly taking place.  相似文献   

11.
This paper presents the synthesis of a series of 5,6‐dihydro‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ring system derivatives with a [1,2,3]triazole ring bonded in position 2. The procedure is based on cycloaddition of substituted alkyl azides to the terminal triple bond of 5,6‐dihydro‐2‐ethynyl‐9‐methyl‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 4 ). This cycloaddition produced two regioisomers ?5,6‐dihydro‐9‐methyl‐2‐(1‐substituted‐1H‐[1,2,3]triazol‐5‐yl)‐4H,8H‐pyrimido[1,2,3‐cd]purine‐8,10(9H)‐dione ( 7 ) and 2‐(1‐substituted‐1H‐[1,2,3]triazol‐4‐yl) derivative 8 . The required 2‐ethynyl deriva tive 4 was obtained from the starting 2‐unsubstituted compound 1 by bromination to yield the 2‐bromo derivative 2 , which was converted by Sonogashira reaction to trimethylsilylethyne 3 and finally, the protective trimethylsilyl group was removed by hydrolysis.  相似文献   

12.
A novel C?C bond‐forming strategy employing manganese‐catalyzed ring‐opening of cyclobutanol substrates, followed by cyanation or ethynylation, is described. A cyano C1 unit and ethynyl C2 unit are regiospecifically introduced to the γ‐position of ketones at room temperature, providing a mild yet powerful method for production of elusive aliphatic nitriles and alkynes. All transformations described are based on a common sequence: 1) oxidative ring‐opening of cyclobutanol substrates by C?C bond cleavage; 2) radical addition to triple bonds bearing an arylsulfonyl group; and 3) radical‐mediated C?S bond cleavage.  相似文献   

13.
A new class of container molecules is described and the first steps in producing protypes are reported. Central to the approach is the formation of polynorbornanes with cyclobutene‐1,2‐difurfuryl esters at the terminus or similar functionality at the bridgehead of a central norbornane subunit. The synthesis of the furfuryl starting materials is described as well as their anthracenyl counterparts. Conversion to the container systems involved the intermolecular linking of the furfuryl or anthracene by treatment with dimethyl acetylene dicarboxylate (DMAD) in a Diels–Alder (DA) protocol under thermal or high‐pressure (HP) conditions. In practice, no intermolecular linking occurred between the norbornane substrates and only products from DA 1:1‐addition with DMAD were produced. Intramolecular addition of one of the furfuryl units onto the cyclobutene π‐bond was detected under HP conditions, and this intermolecular product was capable of isolation and characterization by working at room temperature or below, but reverted to starting material above room temperature. When conducted in the presence of DMAD, a single 1:1‐adduct was obtained in which one furfuryl moiety was intramolecularly cyclized and the other present as the DMAD adduct; again this product underwent retro‐DA reaction at 40°C. Similar intermolecular cyclization was observed with the bis‐anthracenyl esters. The stereoselectivity of the intermolecular attack of the furfuryl diene with the dienophilic cyclobutene gave a single adduct by endo‐face attack in which the oxa‐bridge is endo‐positioned. Quantum chemical DFT calculations (B3LYP) predict that the formation of the endo‐isomer is kinetically favored and that relief of ring strain enhances the rate of retro‐Diels–Alder in the tethered system.  相似文献   

14.
2,5‐Diethoxy‐1,4‐bis[(trimethylsilyl)ethynyl]benzene, C20H30O2Si2, (I), constitutes one of the first structurally characterized examples of a family of compounds, viz. the 2,5‐dialkoxy‐1,4‐bis[(trimethylsilyl)ethynyl]benzene derivatives, used in the preparation of oligo(phenyleneethynylene)s via Pd/Cu‐catalysed cross‐coupling. 2,5‐Diethoxy‐1,4‐diethynylbenzene, C14H14O2, (II), results from protodesilylation of (I). 1,4‐Diethynyl‐2,5‐bis(heptyloxy)benzene, C24H34O2, (III), is a long alkyloxy chain analogue of (II). The molecules of compounds (I)–(III) are located on sites with crystallographic inversion symmetry. The large substituents either in the alkynyl group or in the benzene ring have a marked effect on the packing and intermolecular interactions of adjacent molecules. All the compounds exhibit weak intermolecular interactions that are only slightly shorter than the sum of the van der Waals radii of the interacting atoms. Compound (I) displays C—H...π interactions between the methylene H atoms and the acetylenic C atom. Compound (II) shows π–π interactions between the acetylenic C atoms, complemented by C—H...π interactions between the methyl H atoms and the acetylenic C atoms. Unlike (I) or (II), compound (III) has weak nonclassical hydrogen‐bond‐type interactions between the acetylenic H atoms and the ether O atoms.  相似文献   

15.
《化学:亚洲杂志》2018,13(18):2606-2610
The transition‐metal‐catalyzed formal C−C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3‐diketones instead gives C−H bond insertion products. Herein, we report a protocol for a gold‐catalyzed formal C−C bond insertion reaction of 2‐aryl‐2‐diazoesters with 1,3‐diketones, which provides efficient access to polycarbonyl compounds with an all‐carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C−C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring‐opening of the resulting donor–acceptor‐type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis‐acid‐catalyzed C−C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step.  相似文献   

16.
Rhodium–phosphite catalysts were found to effectively mediate double‐bond migrations within unsaturated esters. Once the double‐bond is in conjugation with the carboxylate group, they also catalyze the Michael addition of carbon and nitrogen nucleophiles. In the presence of these catalysts, unsaturated carboxylates enter a dynamic equilibrium of positional and geometrical double‐bond isomers. The conjugated species are continuously removed through 1,4‐additions with formation of β‐amino esters or β‐arylated products, depending on the nucleophile employed. The applicability of both protocols to a range of substrates, such as fatty esters of different chain lengths and double‐bond positions, and several nucleophiles including arylborates and primary and secondary amines, is demonstrated.  相似文献   

17.
A new methodology taking advantage of gold(I)‐catalyzed ring expansion has been developed to assemble tricyclic 1H‐azocino[5,4‐b]indoles from 2‐propargyl‐β‐tetrahydrocarbolines. The azocinoindoles were obtained in moderate to excellent yields; the structure of which was established by X‐ray crystallographic analysis. A mechanism involving regioselective intramolecular hydroarylation, [1,2]‐alkenyl migration and carbon–carbon bond‐fragmentation was proposed.  相似文献   

18.
The title compound, [Pd2(C4H13N3)2(C14H16N2)](NO3)4, comprises discrete tetracationic dumbbell‐type dinuclear complex molecules and noncoordinating nitrate anions. Two Pd(dien)2+ moieties (dien is diethylenetriamine) are joined by the rigid linear exo‐bidentate bridging 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine ligand to form the dinuclear complex, which lies across a centre of inversion in the space group P21/n, so that the rings in the 2,2′,6,6′‐tetramethyl‐4,4′‐bipyridine bridging ligand are parallel. In the crystal, the primary and secondary amino groups of the dien ligand act as hydrogen‐bond donors towards the nitrate anions to form a three‐dimensional hydrogen‐bond network.  相似文献   

19.
A new series of sterically hindered ligands containing (1R,2S,4R)‐(+)‐menthoxymethyl group attached to benzimidazole‐based N‐heterocyclic carbene (NHC), palladium–bis‐NHC complexes and (κ2C,N)‐palladacyclic NHC complexes have been synthesized and characterized using appropriate spectroscopic techniques. Catalytic performance of the palladium complexes has been investigated for allylic alkylation, Suzuki and Heck carbon–carbon coupling reactions. These complexes smoothly catalyse the carbon–carbon bond formation reactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
2′‐Deoxyadenosine triphosphate (dATP) derivatives bearing diverse substituents (Cl, NH2, CH3, vinyl, ethynyl, and phenyl) at position 2 were prepared and tested as substrates for DNA polymerases. The 2‐phenyl‐dATP was not a substrate for DNA polymerases, but the dATPs bearing smaller substituents were good substrates in primer‐extension experiments, producing DNA substituted in the minor groove. The vinyl‐modified DNA was applied in thiol–ene addition and the ethynyl‐modified DNA was applied in a CuAAC click reaction to form DNA labelled with fluorescent dyes in the minor groove  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号