首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed experimental investigation is carried out to study the flow boiling heat transfer behavior of R-134a/R-290/R-600a (91%/4.068%/4.932% by mass) refrigerant mixture in smooth horizontal tubes of diameter 9.52 and 12.7 mm. The heat transfer coefficients of the mixture are experimentally measured under varied heat flux conditions for stratified flow patterns using a coaxial counter-current heat exchanger test section. The tests are conducted for refrigerant inlet temperatures between ?9 and 5 °C and mass flow rates ranging from 3 to 5 g s?1. Kattan–Thome–Favrat maps are used to confirm the flow patterns for the tested conditions. The magnitude of the heat transfer coefficient with respect to flow patterns and different mechanisms of boiling are discussed. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a for selected working conditions. The significance of nucleate boiling in the overall heat transfer process under these testing conditions is highlighted.  相似文献   

2.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

3.
Flow boiling heat transfer with the refrigerants R-134a and R-245fa in copper microchannel cold plate evaporators is investigated. Arrays of microchannels of hydraulic diameter 1.09 and 0.54 mm are considered. The aspect ratio of the rectangular cross section of the channels in both test sections is 2.5. The heat transfer coefficient is measured as a function of local thermodynamic vapor quality in the range −0.2 to 0.9, at saturation temperatures ranging from 8 to 30 °C, mass flux from 20 to 350 kg m−2 s−1, and heat flux from 0 to 22 W cm−2. The heat transfer coefficient is found to vary significantly with heat flux and vapor quality, but only slightly with saturation pressure and mass flux for the range of values investigated. It was found that nucleate boiling dominates the heat transfer. In addition to discussing measurement results, several flow boiling heat transfer correlations are also assessed for applicability to the present experiments.  相似文献   

4.
The influence of oil on nucleate pool boiling heat transfer   总被引:1,自引:0,他引:1  
The influence of various oil contents in R134a is investigated for nucleate pool boiling on copper tubes either sandblasted or with enhanced heating surfaces (GEWA-B tube). Polyolester oils (POE) (Reniso Triton) with medium viscosity 55 cSt (SE55) and high viscosity 170 cSt (SE170) were used. Heat transfer coefficients were obtained for boiling temperatures between −28.6 and +20.1°C. The oil content varied from 0 to 5% mass fraction. For the sandblasted tube and the SE55 oil the heat transfer coefficients for the refrigerant/oil-mixture can be higher or lower than those for the pure refrigerant, depending on oil mass fraction, boiling temperature and heat flux. In some cases the highest heat transfer coefficients were obtained at a mass fraction of 3%. For the 170 cSt oil there is a clear decrease in heat transfer for all variations except for a heat flux 4,000 W/m2 and −10.1°C at 0.5% oil content. The heat transfer coefficients are compared to those in the literature for a smooth stainless steel tube and a platinum wire. For the enhanced tube and 55 cSt oil the heat transfer coefficients are clearly below those for pure refrigerant in all cases. The experimental results for the sandblasted tube are compared with the correlation by Jensen and Jackman. The calculated values are within +20 and −40% for the medium viscosity oil and between +50% and −40% for the high viscosity oil. A correlation for predicting oil-degradation effects on enhanced surfaces does not exist.  相似文献   

5.
The condensation heat transfer coefficients of R-22, R-134a and R-410A in a single circular microtube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The test section is a smooth, horizontal copper tube of 1.77 mm inner diameter. The experiments were conducted at mass flux of 450-1050 kg/m2 s, saturation temperature of 40 °C. The test results showed that in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski correlation. In case of two-phase flow, the condensation heat transfer coefficient of R-410A was higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensing heat transfer. And also, recently proposed correlation in the single circular microtube is considered not adequate for small diameter tube. Therefore, it is necessary to develop accurate and reliable correlation to predict heat transfer characteristics in the single circular microtube.  相似文献   

6.
This paper presents the experimental results of condensation heat transfer coefficients of hydrocarbon (HC) refrigerants R-290 and R-600a, hydrochlorofluorocarbon (HCFC) refrigerant R-22, and hydrofluorocarbon (HFC) refrigerant R-134a in a horizontal double-pipe heat exchanger having pipe inner diameters of 10.07, 7.73, 6.54, and 5.80 mm. The condensation process experiments were conducted at mass flux of 35.5–210.4 kg/ms and condensation temperature of 40°C. The main results were summarized as follows: The average condensation heat transfer coefficients of R-290 and R-600a were higher than those of R-22 and R-134a. The pressure drops of the four refrigerants were in the order of R-600a > R-290 > R-134a > R-22. The pressure drops of R-600a, R-290, R-134a, and R-22 were approximately 6–15, 9.8–12.5, 4.3–6.7, and 2.1–4.6% higher, respectively, in the 10.7 mm diameter tubes compared to the 5.80 mm diameter tubes. Comparing the condensation heat transfer coefficients of our experimental results with those of other correlations, our experimental data in all the test tubes coincided best with that of Haraguchi et al.  相似文献   

7.
An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and −20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.  相似文献   

8.
An experimental study was carried out to investigate condensation heat transfer and pressure drop characteristics of R-134a in a coiled double tube oriented with its helix axis in the vertical direction. Measurements were obtained at inlet pressure of 815 kPa for refrigerant mass flux ranging from 95 to 710 kg/m2s and cooling water Reynolds number varying from 1000 to 14000. Presented results illustrate the effects of refrigerant mass flux and average condensation temperature difference on the condensation heat transfer coefficient and pressure drop. Comparison with relevant data from other sources indicates a reasonable agreement. An empirical correlation was obtained for predicting condensation heat transfer coefficient. The present study may be considered of a practical and theoretical interest for the design of the helical double-tube condensers using R-134a as the working fluid. M. El-Sayed Mosaad is on leave from Mechanical Engineering Department, Mansoura University, Egypt.  相似文献   

9.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

10.
Absorber is an important component in vapor absorption refrigeration system and its performance has greater influence in overall efficiency of absorption machines. Falling film heat and mass transfer in an absorber is greatly influenced by fluid properties, geometry of heat exchanger and its operating parameters. This paper presents on the results of experimental studies on the heat and mass transfer characteristics of a coiled tube falling film absorber, using 1,1,1,2-Tetrafluroethane(R-134a) and N-N Dimethyl Acetamide (DMAC) as working fluids. The effects of film Reynolds number, inlet solution temperature and cooling water temperature on absorber heat load, over all heat transfer coefficient and mass of refrigerant absorbed are presented and discussed. Normalized solution and coolant temperature profiles and refrigerant mass absorbed along the height of absorber are also observed from the experimental results. The optimum over all heat transfer coefficient for R-134a–DMAC solution found to be 726 W/m2K for a film Reynolds number of 350. The R-134a vapour absorption rate is maximum in the normalized coil height of 0.6 to 1.  相似文献   

11.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

12.
The flow patterns and heat transfer coefficients of R-22 and R-134a during evaporation in small diameter tubes were investigated experimentally. The evaporation flow patterns of R-22 and R-134a were observed in Pyrex sight glass tubes with 2 and 8 mm diameter tube, and heat transfer coefficients were measured in smooth and horizontal copper tubes with 1.77, 3.36 and 5.35 mm diameter tube, respectively. In the flow patterns during evaporation process, the annular flows in 2 mm glass tube occurred at a relatively lower vapor quality compared to 8 mm glass tube. The flow patterns in 2 mm glass tube did not agree with the Mandhane’s flow pattern maps. The evaporation heat transfer coefficients in the small diameter tubes (d i  < 6 mm) were observed to be strongly affected by tube diameters, and to differ from those in the large diameter tubes. The heat transfer coefficients of 1.77 mm tube were higher than those of 3.36 mm and 5.35 mm tube. Most of the existing correlations failed to predict the evaporation heat transfer coefficient in small diameter tubes. Therefore, based on the experimental data, the new correlation is proposed to predict the evaporation heat transfer coefficients of R-22 and R-134a in small diameter tubes.  相似文献   

13.
This research focuses on heat transfer to R-134a during flow boiling in a 1.75 mm internal diameter tube. Flow visualisation and heat transfer experiments are conducted to obtain heat transfer coefficients for different flow patterns. The measured data in each flow regime are compared with predictions from a three-zone flow boiling model. The calculations are in fair agreement with the experimental results which correspond in particular to slug flow, throat-annular flow and churn flow regimes under conditions of low heat flux.  相似文献   

14.
The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between −30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini’s correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.  相似文献   

15.
An experimental study of convective boiling of refrigerants R-22, R-134a and R-404A in a 12.7 mm internal diameter, 2 m long, horizontal copper tube has been performed. Experiments involved a relatively wide range of operational conditions. Experiments were performed at the evaporating temperatures of 8°C and 15°C. Quality, mass velocity and heat flux varied in the following ranges: 5% to saturated vapor, 50–500 kg/(s m2); and 5–20 kW/m2. Effects of these physical parameters over the heat transfer coefficient have been investigated. High quality experiments were also performed up to the point of the tube surface dryout, a mechanism which was investigated from the qualitative point of view. Two heat transfer coefficient correlations from the literature have been evaluated through comparisons with experimental data. Deviations varied in the range from −25% to 42%.  相似文献   

16.
In the present study, the heat flux received by a bubble pump, which was simulated to a vertical tube 1 m long and with a variable diameter, was optimized. A numerical study was carried out in order to solve balance equations concerning the water-ammonia mixture in the up flow. The two-fluid model was used to derive the equations. A numerical study was carried out on a heat flux between 1 and 70 kW m−2 and the liquid velocity was determined. The optimum flux was determined for a tube diameter equal to 4, 6, 8 and 10 mm and a mass flow rate ranging from 10 to 90 kg m−2 s−1. The optimum heat flux was correlated as a function of the tube diameter and mass flow rate, while the minimum heat flux required for pumping was correlated as a function of the tube diameter.  相似文献   

17.
This article reports an experimental investigation on flow boiling heat transfer and pressure drop of refrigerant R-134a in a smooth horizontal and two microfinned tubes from different manufacturers with the same geometric characteristics. Experiments have been carried out in an experimental facility developed for change of phase studies with a test section made with 9.52 mm external diameter, 1.5 m long copper tubes, electrically heated by tape resistors wrapped on the external surface. Tests have been performed under the following conditions: inlet saturation temperature of 5 °C, vapor qualities from 5% to 90%, mass velocity from 100 to 500 kg/s m2, and a heat flux of 5 kW/m2. Experimental results indicated that the heat transfer performance was basically the same for both microfin tubes. The pressure drop is higher in the microfinned tubes in comparison to the smooth tube over the whole range of mass velocities and vapor qualities. The enhancement factor, used to evaluate the combination of heat transfer and pressure drop, is higher than one for both tubes for mass velocities lower than 300 kg/s m2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient. Some images, illustrating the flow patterns, were obtained from the visualization section, located in the exit of the test section with the same internal diameter of the tested tube.  相似文献   

18.
This study experimentally investigated the flow boiling heat transfer, pressure drop, and flow pattern in a horizontal square minichannel with a hydraulic diameter of 2.0 mm, and the effects of mass flux, vapor quality, heat flux, and refrigerant properties on the flow boiling characteristics were clarified. The heat transfer coefficient and pressure drop of R32 and R1234yf were measured in a mass flux range of 50–400 kgm−2s−1 at a saturation temperature of 15 °C. The flow pattern of the square minichannel outlet was observed and was classified as plug, wavy, churn, and annular flows. The heat transfer coefficients in the square minichannel were larger than those in the circular minichannel with a similar hydraulic diameter at low mass flux conditions. The heat transfer coefficients of R32 indicated higher values compared with those of R1234yf at same mass flux and qualities. An empirical heat transfer model taking into account the forced convection, nucleate boiling, and thin liquid film evaporation was developed for horizontal square and circular minichannels. The frictional pressure drop of R32 was 1.5–2 times higher than that of R1234yf at same mass flux and vapor quality condition, and the effect of channel shape on the frictional pressure drop was small unlike the boiling heat transfer.  相似文献   

19.
The flow boiling heat transfer characteristics of R134a in the multiport minichannel heat exchangers are presented. The heat exchanger was designed as the counter flow tube-in-tube heat exchanger with refrigerant flowing in the inner tube and hot water in the gap between the outer and inner tubes. Two inner tubes were made from extruded multiport aluminium with the internal hydraulic diameter of 1.1 mm for 14 numbers of channels and 1.2 mm for eight numbers of channels. The outer surface areas of two inner test sections are 5979 mm2 and 6171 m2, while the inner surface areas are 13,545 mm2 and 8856 mm2 for 14 and eight numbers of channels, respectively. The outer tube of heat exchanger was made from circular acrylic tube with an internal hydraulic diameter of 25.4 mm. The experiments were performed at the heat fluxes between 15 and 65 kW/m2, mass flux of refrigerant between 300 and 800 kg/m2 s and saturation pressure ranging from 4 to 6 bar. For instance the boiling curve, average heat transfer coefficients are discussed. The comparison results of two test sections with different the number of channels are investigated. The results are also compared with nine existing correlations. The new correlation for predicting the heat transfer coefficient was also proposed.  相似文献   

20.
This article describes experimental investigations of the heat transfer coefficient and pressure drop of R-134a flowing inside internally grooved tubes. The test tubes are one smooth tube and four grooved tubes. All test tubes are made from type 304 stainless steel, have an inner diameter of 7.1 mm, are 2,000 mm long and are installed horizontally. The test section is uniformly heated by a DC power supply to create evaporation conditions. The groove depth of all grooved tubes is fixed at 0.2 mm. The experimental conditions are conducted at saturation temperatures of 20, 25 and 30°C, heat fluxes of 5, 10 and 15 kW/m2, and mass fluxes of 300, 500 and 700 kg/m2 s. The effects of groove pitch, mass flux, heat flux, and saturation temperature on heat transfer coefficient and frictional pressure drop are discussed. The results illustrate that the grooved tubes have a significant effect on the heat transfer coefficient and frictional pressure drop augmentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号