首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abstract

The optical properties of nominally pure and Er3+- or Pr3+ -doped yttria-stabilized zirconia single crystals were investigated under UV light excitation. In the excitation spectra of both types of doped crystals, a broad UV band is observed. Under excitation with light of different wavelengths inside this band, the luminescence features of the doped crystals are different. YSZ: Pr3+ samples exhibit the characteristic 4f → 4f emission of the Pr3+ ions. In YSZ: Er3+ crystals, both the Er3+ ion and the intrinsic luminescence are observed. Host to Er3+ ion radiative energy-transfer is also demonstrated. No dependence of the transfer process with the excitation wavelength was found. These results suggest that the UV band in Er3+ -doped crystals is associated with the lattice-dopant ion interaction rather than with the 4f5d interconfigurational band of the Er3? ions.  相似文献   

2.
Er3+ doped ZnO-CaO-Al2O3 nano-composite phosphor has been synthesized through combustion method and its emission and harmonic generation properties have been studied. The X-ray diffraction and thermal analysis techniques have been used to prove the dual phase (ZnO and CaO-Al2O3) nature of the phosphor. The phosphor has shown up-conversion emission on near-infra-red (976 nm) excitation and down-conversion emission on 355 nm excitation in presence of Er3+ and thus behaves as a dual mode phosphor. On excitation with 976 nm diode laser, material shows color tunability (calcination of composite material at different temperatures). Formation of ZnO nanocrystals on heat treatment of as-synthesized sample has shown its characteristic emission at 388 nm and also the energy transfer from ZnO to Er3+ ions. The low temperature emission measurements have been carried out and the results have been discussed. Phosphor has shown strong second harmonic generation (SHG) at 532 nm on 1064 nm and at 266 nm on 532 nm excitation.  相似文献   

3.
The energy transfer between Sm3+ and Er3+ ions in yttrium orthophosphate is studied. This choice of ions is based on the possibility of quantum cutting processes and the host material is selected according to the position of the 5d bands of the Sm3+ ion. The Sm3+ and Er3+ doped and Sm3+, Er3+ co-doped YPO4 have been synthesized. Spectroscopic studies were done in the ultraviolet and vacuum ultraviolet ranges. The energy transfer between Sm3+ and Er3+ is very efficient but it does not lead to Er3+ visible emission. Whatever the excitation wavelength, the emission of co-doped samples mainly occurs in the infrared range.  相似文献   

4.
苏方宁  邓再德 《中国物理》2006,15(5):1096-1100
The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.  相似文献   

5.
The upconverted VUV (185 nm) and UV (230 and 260 nm) luminescence due to 5d-4f radiative transitions in Nd3+ ions doped into a LiYF4 crystal has been obtained under excitation by 351/353 nm radiation from a XeF excimer laser. The maximum upconversion efficiency, defined as the ratio of intensity for 5d-4f luminescence to overall intensity for 5d-4f and 4f-4f luminescence from the 4D3/2 Nd3+ level, has been estimated to be about 70% under optimal focusing conditions for XeF laser radiation. A redistribution of intensity between three main components of 5d-4f Nd3+ luminescence is observed under changing the excitation power density, which favors the most long-wavelength band (260 nm) at higher excitation density level. The effect is interpreted as being due to excited state absorption of radiation emitted. The upconverted VUV and UV luminescence from the high-lying 2F(2)7/2 4f level of Er3+ doped into a LiYF4 crystal has also been obtained under XeF-laser excitation the most intense line being at 280 nm from the spin-allowed transition to the 2H(2)11/2 4f level of Er3+, but the efficiency of upconversion for Er3+ emission is low, less than 5%.  相似文献   

6.
肖思国  阳效良  丁建文 《物理学报》2009,58(6):3812-3820
采用共沉淀法制备了Er3+掺杂和Er3+/Yb3+共掺杂LaF3超微材料,所制备的样品的颗粒呈球形,尺寸为250nm左右.计算得到Er3+单掺杂样品中对应着4S3/24F9/2能级的发光量子效率分别为67.0%和71.9%.研究发现,随着Yb3+离子浓度的增加 关键词: 3+')" href="#">Er3+ 3+')" href="#">Yb3+ 发光 能量传递  相似文献   

7.
We prepared Er3+ doped and Er3+/Yb3+ codoped Sb2O4 nanocrystals by the sol-gel method. The Raman, X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra of the samples were studied. The phonon energy of the Sb2O4 nanocrystals is very low (the maximum value being 461 cm−1). The upconversion (UC) red emission of the Er3+/Yb3+ codoped sample is very strong at 975 nm laser diode excitation. The Sb2O4 nanocrystals will be a promising luminous material.  相似文献   

8.
用高温熔融法制备了系列Er3+/Yb3+共掺,Ho3+/Yb3+共掺,和Er3+/Yb3+/Ho3+三掺碲酸盐玻璃,在975nm激光抽运下三种掺杂玻璃中都出现了较强的绿光和红光上转换.研究了Yb3+离子对Er3+和Ho3+离子上转换发光强度的影响以及Yb3+→Er关键词: 3+/Yb3+/Ho3+共掺')" href="#">Er3+/Yb3+/Ho3+共掺 碲酸盐玻璃 光谱性质 上转换  相似文献   

9.
Er3+ doped and Yb3+/Er3+ co-doped Y4Al2O9 phosphors are prepared by the sol-gel method. The effect of dopant concentration on the structure and up-conversion properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to monoclinic. Under 980 nm excitation, the green and red up-conversion emissions are observed and the emission intensities depended on the Yb3+ ion concentration. The green up-conversion emissions decrease with the increase of Yb3+ concentration, while red emission increases as Yb3+ concentration increases from 0 to 8 at% and then decreases at high Yb3+ concentration. The mechanisms of the up-conversion emissions are discussed and results shows that in Er3+ and Yb3+/Er3+ co-doped system, cross-relaxation (CR) and energy transfer (ET) processes play an important role for the green and red up-conversion emissions.  相似文献   

10.
Undoped and Er3+-doped glass–ceramics of composition (100−x)SiO2–xSnO2, with x = 5 or 10 and with 0.4 or 0.8 mol% of Er3+ ions, were synthesised by thermal treatment of precursor sol–gel glasses. Structural studies were developed by X-Ray Diffraction. Wide band gap SnO2 semiconductor quantum-dots embedded in the insulator SiO2 glass are obtained. The mean radius of the SnO2 nanocrystals, ranging from 2 to 3.2 nm, is comparable to the exciton Bohr radius. The luminescence properties have been analysed as a function of sample composition and thermal treatment. The results show that Er3+ ions are partially partitioned into the nanocrystalline phase. An efficient UV excitation of the Er3+ ions by energy transfer from the SnO2 nanocrystal host is observed. The Er3+ ions located in the SnO2 nanocrystals are selectively excited by this energy transfer mechanism. On the other hand, emission from the Er3+ ions remaining in the silica glassy phase is obtained by direct excitation of these ions.  相似文献   

11.
We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 410 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process.  相似文献   

12.
Submicron core-shell structure particles SiO2@Y3Al5O12:Er3+, which silica spherical particles was coated with an yttrium aluminum garnet (Y3Al5O12) layer doped with Er3+, were prepared by the modified Pechini-Type sol-gel method for the first time. The structure and morphology of samples were detected by the X-ray powder diffraction (XRD) measurement, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), respectively. The results indicate that well-crystallized garnet nanocrystallines were formed on the surface of the silica particles. The luminescent spectra in near infrared and visible region of the core-shell structured SiO2@Y3Al5O12:Er3+ powders were also investigated and compared with those of the pure Y3Al5O12:Er3+ and the Er3+ doped silicate glass. The results show that mono-dispersed SiO2@Y3Al5O12:Er3+ core-shell spherical particles with the near infrared, red and green luminescent emissions under the excitation of 980 nm laser diode have been successfully synthesized.  相似文献   

13.
Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors were synthesized using a hydrothermal method. The phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and up-conversion (UC) emission spectra. After annealing, the phosphors emitted white light under a 980 nm continuous wave diode laser (CW LD 2 W) excitation. As the excitation power density changed in the range of 20-260 W/cm2, the chromaticity coordinates of the UC light of the phosphor Ca0.885Tm0.005Er0.01Yb0.1F2 fell well in the white region of the 1931 CIE diagram. For the proportion of red, green and blue (RGB) in white light is strict, key factors for achieving UC white light, such as host materials, rare earth ions doping concentrations, annealing temperatures, as well as the excitation power densities, were investigated and discussed.  相似文献   

14.
Spectroscopic properties and energy transfer (ET) in Ga2O3-GeO2-Bi2O3-Na2O (GGBN, glass doped with Er3+ and rare earths (RE3+; RE3+=Ce3+, Tb3+) have been investigated. Intense 1.53-μm emission with the peak emission cross-section achieved to 7.58×10−21 cm2 from Er3+-doped GGBN glass has been obtained upon excitation at 980 nm. Effects of RE3+ (RE3+=Ce3+, Tb3+) codoping on the optical properties of Er3+-doped GGBN glass have been investigated and the possible ET mechanisms involved have also been discussed. Significant enhancement of the 1.53 μm emission intensity and decrease of upconversion (UC) fluorescence with increasing Ce3+ concentration have been observed. The incorporation of Tb3+ into Er3+-doped GGBN glass could significantly decrease the UC emission intensity, but meanwhile decrease the 1.53 μm emission intensity due to the ET from Er3+:4I13/2 to Tb3+:7F2. The results indicate that the incorporation of Ce3+ into Er3+-doped GGBN glass can effectively improve 1.53-μm and lower UC luminescence, which makes GGBN glass more attractive for use in C-band optical fiber amplifiers.  相似文献   

15.
徐伟  李成仁  曹保胜  董斌 《中国物理 B》2010,19(12):127804-127804
Yb3+:Er3+co-doped oxy-fluoride ceramics glass has been prepared.The mechanism of up-conversion emissions about Er3+was discussed,and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated.The results show that the sensitivity of this sample reaches its maximum value,about 0.0047 K 1,when the temperature is 383 K,indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.  相似文献   

16.
New near-infrared luminescent, monoclinic CaAl2O4:Er3+ phosphor was prepared by using the combustion route at furnace temperatures as low as 500 °C in a few minutes. Combustion synthesized phosphor has been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping studies. The luminescence spectra of Er3+-doped calcium aluminate were studied at UV (380 nm), vis (488 nm) and IR (980 nm) excitation. Upon UV and vis excitation, the CaAl2O4:Er3+ phosphor exhibits emission bands at ~523 nm and at ~547 nm, corresponding to transitions from the 2H11/2 and 4S3/2 erbium levels to the 4I15/2 ground state. A strong luminescence at 1.55 μm in the infrared (IR) region due to 4I13/24I15/2 transition has been observed in CaAl2O4:Er3+ phosphor upon 980 nm CW pumping. In the spectrum of IR-excited up-conversion luminescence, green (~523 and ~547 nm) and red (662 nm) luminescence bands were present, the latter associated with the 4F9/24I15/2 transitions of Er3+ ions. Both excited state absorption and energy transfer may be proposed as processes responsible for the population of the 4S3/2 and 4F9/2 erbium levels upon IR excitation. The mechanisms responsible for the up-conversion luminescence are discussed.  相似文献   

17.
王森  周亚训  戴世勋  王训四  沈祥  陈飞飞  徐星辰 《物理学报》2012,61(10):107802-107802
采用高温熔融退火法制备了系列 80TeO2-10Bi2O3-10TiO2-0.5Er2O3-xCe2O3 (x=0,0.25, 0.5,0.75,1.0 mol%)和(80-y) TeO2-10Bi2O3-10TiO2-yWO3-0.5Er2O3-0.75Ce2O3 (y=3,6,9,12 mol%)的碲铋酸盐玻璃.测试了玻璃样品400-1700 nm范围内的吸收光谱, 975 nm抽运下的上转换发光谱和1.53 μm波段荧光谱, 以及808 nm激励下的Er3+离子荧光寿命和无掺杂玻璃样品的Raman光谱, 并结合Judd-Ofelt理论和McCumber理论计算了Er3+离子光谱参数.结果表明, 在掺Er3+碲铋酸盐玻璃中引入Ce3+离子进行Er3+/Ce3+共掺, 通过Er3+离子4I11/2能级与Ce3+离子2F5/2 能级间基于声子辅助的能量传递过程,可以有效抑制Er3+离子上转换发光并明显增强其 1.53 μm波段荧光;同时,在现有Er3+/Ce3+共掺玻璃组分基础上引入WO3, 可进一步提高1.53 μm波段荧光并展宽其荧光发射谱. 研究结果对于获取优异光谱特性的宽带掺Er3+光纤放大器玻璃基质具有实际意义.  相似文献   

18.
李成仁  李淑凤  董斌  程宇琪  殷海涛  杨静  陈宇 《中国物理 B》2011,20(1):17803-017803
This paper reports that a series of Nd3+:Er3+:Yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J--O intensity parameters Ωk (k=2, 4, 6), spontaneous radiative lifetime τrad, spontaneous transition probability A, fluorescence branching ratio β and oscillator strength fed of the Nd3+ ions at room temperature are calculated based on Judd--Ofelt (J--O) theory. The temperature dependence of the up-conversion photoluminescence characteristics in a Nd3+:Er3+:Yb3+ co-doped sample is studied under a 978 nm semiconductor laser excitation, and the energy transfer mechanisms among Yb3+, Er3+ and Nd3+ ions are analysed. The results show that the J--O intensity parameters Ω2 increase when the Nd3+ concentration of the Nd3+:Er3+:Yb3+ co-doped borosilicate glasses increases. The possibility of spontaneous transition is small and lifetimes are long at levels of 4F5/2 and 4F3/2. The intensity of Nd3+ emissions at 595, 691, 753, 813 and 887 nm are markedly enhanced when the sample temperature exceeds 400 K. The reasons being the cooperation of the secondary sensitization from Er3+ to Nd3+ and the contribution of a multi-phonon.  相似文献   

19.
Er3+/Yb3+/Li+-tridoped BaTiO3 nanocrystals were prepared by a sol-gel method to improve the upconversion (UC) luminescence of rare-earth doped BaTiO3 nanoparticles. Effects of Li+ ion on the UC emission properties of the Er3+/Yb3+/Li+-tridoped BaTiO3 nanocrystals were investigated. The results indicated that tridoping with Li+ ion enhanced the visible green and red UC emissions of Er3+/Yb3+-codoped BaTiO3 nanocrystals under the excitation of a 976 nm laser diode. X-ray diffraction and decay time of the UC luminescence were studied to explain the reasons of the enhancement of UC emission intensity. X-ray diffraction results gave evidence that tridoping with Li+ ion decreased the local symmetry of crystal field around Er3+, which increased the intra-4f transitions of Er3+ ion. Moreover, lifetimes in the intermediate 4 S3/2 and 4I11/2 (Er) states were enhanced by Li+ ion incorporation in the lattice. Therefore, it can be concluded that Li+ ion in rare-earth doped nanocrystals is effective in enhancing the UC emission intensity.  相似文献   

20.
在Er3+/Yb3+共掺TeO2-WO3-ZnO玻璃中引入Ce3+,研究了Ce3+对Er3+1.5μm发射性能及其上转换发光性能的影响。结果表明,随Ce3+浓度的增加Er3+1.5μm波段的荧光强度先增强后降低,优化的Ce3+掺杂浓度在2.07×1020/cm3左右;1.5μm波段的荧光寿命则随Ce3+浓度的增加有轻微降低,从3.4ms降到3.0ms,但Ce3+浓度的增加对1.5μm波段的荧光半高宽基本无影响;Er3+/Ce3+间的交叉弛豫Er3+(4I11/2)+Ce3+(2F5/2)→Er3+(4I13/2)+Ce3+(2F7/2)使玻璃的上转换发光强度大大降低,但在过高的Ce3+浓度下,Er3+/Ce3+间的另一交叉弛豫Er3+(4I13/2)+Ce3+(2F5/2)→Er3+(4I15/2)+Ce3+(2F7/2)则使Er3+4I13/2能级粒子数减少,导致1.5μm波段荧光强度和荧光寿命降低. 关键词: 碲钨酸盐玻璃 发光性能 3+离子')" href="#">Er3+离子 3+离子')" href="#">Ce3+离子 交叉弛豫  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号