首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spiral waves in the viscous incompressible fluid flow within an arterial vessel modeled by a thin elastic isotropic shell are studied. Asymptotic expansions are constructed for two types of spiral waves. The first type is spiral long wall waves generated (owing to the viscous fluid no-slip at the inner shell wall) by the longitudinal and twist harmonic waves that propagate along the wall. For these waves the amplitude distribution over the vessel cross-section has the form of a boundary layer localized near the inner shell surface. The second is short small-amplitude waves that practically fill the entire vessel cross-section. It is shown that for the short waves the transfer mechanismis the steady-state flow, the role of the longitudinal wall waves and the elastic characteristics of the shell being in this case insignificant.  相似文献   

2.
Propagation of SH waves in an irregular monoclinic crustal layer   总被引:2,自引:0,他引:2  
The present paper discusses the dispersion equation for SH waves in a monoclinic layer over a semi-infinite elastic medium with an irregularity. In the absence of the irregularity, the dispersion equation reduces to standard dispersion equation for SH waves in a monoclinic layer over an isotropic semi-infinite medium. The dispersion curves for different size of the irregularity are computed and compared for the half-space without any irregularity. It can be seen that the phase velocity is strongly influenced by the wave number and the depth of the irregularity.  相似文献   

3.
We consider a plane problem of propagation of unsteady waves in a plane layer of constant thickness filled with a homogeneous linearly elastic isotropic medium in the absence of mass forces and with zero initial conditions. We assume that, on one of the layer boundaries, the normal stresses are given in the form of the Dirac delta function, the tangential stresses are zero, and the second boundary is rigidly fixed. The problem is solved by using the Laplace transform with respect to time and the Fourier transform with respect to the longitudinal coordinate. The normal displacements at an arbitrary point are obtained in the form of finite sums.  相似文献   

4.
A generalized transverse wave is a propagating acceleration discontinuity on which the temperature and the entropy, together with their gradients, are continuous. In a heat-conducting elastic material the propagation and growth of such waves are uninfluenced by thermomechanical interaction. It is shown in this paper that in any given plane there is at least one direction in which a generalized transverse wave may propagate, and the existence is also proved of at least one direction in which a pair of generalized transverse waves may travel. Necessary and sufficient conditions are established for the speeds of propagation of these waves to be real. Relationships between transverse and generalized transverse waves are also studied, and in the last two sections of the paper the directions in which generalized transverse waves may propagate in an isotropic heat-conducting elastic material are systematically worked out and classified.  相似文献   

5.
Cloaking of a circular cylindrical elastic inclusion embedded in a homogeneous linear isotropic elastic medium from antiplane elastic waves is studied. The transformation or change-of-variables method is used to determine the material properties of the cloak and the homogenization theory of composites is used to construct a multilayered cloak consisting of many bi-material cells. The large system of algebraic equations associated with this problem is solved by using the concept of multiple scattering with wave expansion coefficient matrices. Numerical results for cloaking of an elastic inclusion and a rigid inclusion are compared with the case of a cavity. It is found that while the cloaking patterns for the three cases are similar, the major difference is that standing waves are generated in the elastic inclusion and the multilayered cloak cannot prevent the motion inside the elastic inclusion, even though the cloak seems nearly perfect. Waves can penetrate into and cause vibrations inside the elastic inclusion, where the amplitude of standing waves depend on the material properties of the inclusion but are very much reduced when compared to the case when there is no cloak. For a prescribed mass density, the displacements inside the elastic cylinder decrease as the shear modulus increases. Moreover, the cloaking of the elastic inclusion over a range of wavenumbers is also investigated. There is significant low frequency scattering even if the cloak consists of a large number of layers. When the wavenumber increases, the multilayered cloak is not effective if the cloak consists of an insufficient number of layers. Resonance effects that occur in cloaking of elastic inclusions are also discussed.  相似文献   

6.
Elastodynamic Behaviour of Honeycomb Cellular Media   总被引:2,自引:0,他引:2  
The aim of this contribution is twofold. First, we formulate a continuum model of the elastic cellular medium having a plane periodic structure of an arbitrary lay-out. Second, we apply this model to the analysis of wave propagation and vibration problems in a regular hexagonal (honeycomb) structure. The proposed approach makes it possible to investigate the cell size effect on the global dynamic behaviour of the medium under consideration. It is shown that the overall response of a honeycomb structure is transversaly isotropic and that two special kinds of long waves can propagate in the unbounded medium. The physical correctness and the scope of applicability of the obtained results are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We study shear-horizontal (SH) waves in a rotated Y-cut quartz plate carrying an isotropic elastic layer of finite thickness.The three-dimensional theories of anisotropic elasticity and isotropic elast...  相似文献   

8.
This paper presents an analysis of wave propagation in a microstretch elastic medium in the context of the Green–Naghdi (GN) theory. Moreover, the dissipation and the influence of gravity on reflected waves have also been investigated. In the present article, five reflected waves propagate into the medium for any incident wave. The problem is solved numerically, and the amplitude ratios are graphically represented allowing for a comparison between the simple GN theory and the case in which one considers the effect of gravity on waves.  相似文献   

9.
The scattering by a circle is considered when the outside medium is isotropic and the inside medium is anisotropic (orthotropic). The problem is a scalar one and is phrased as a scattering problem for elastic waves with polarization out of the plane of the circle (SH wave), but the solution is with minor modifications valid also for scattering of electromagnetic waves. The equation inside the circle is first transformed to polar coordinates and it then explicitly contains the azimuthal angle through trigonometric functions. Making an expansion in a trigonometric series in the azimuthal coordinate then gives a coupled system of ordinary differential equations in the radial coordinate that is solved by power series expansions. With the solution inside the circle complete the scattering problem is solved essentially as in the classical case. Some numerical examples are given showing the influence of anisotropy, and it is noted that the effects of anisotropy are generally strong except at low frequencies where the dominating scattering only depends on the mean stiffness and not on the degree of anisotropy.  相似文献   

10.
This paper concentrates on the study of the propagation of harmonic plane waves in a homogeneous anisotropic thermoelastic diffusive medium in the context of different theories of thermoelastic diffusion. It is found that five types of waves propagate in an anisotropic thermoelastic diffusive medium, namely a quasi-elastodiffusive (QED-mode), two quasi-transverse (QSH-mode and QSV-mode), a quasi-mass diffusive (QMD-mode) and a quasi-thermo diffusive (QTD-mode) wave. The governing equations for homogeneous transversely isotropic diffusive medium in different theories of thermoelastic diffusion are taken as a special case. It is noticed that when plane waves propagate in one of the planes of transversely isotropic thermoelastic diffusive solid, purely quasitransverse wave mode(QSH) decouples from rest of the motion and is not affected by the thermal and diffusion vibrations. On the other hand, when plane waves propagate along the axis of solid, two quasi-transverse wave modes (QSH and QSV) decouple from the rest of the motion and are not affected by the thermal and diffusion vibrations. From the obtained results, the different characteristics of waves like phase velocity, attenuation coefficient, specific loss and penetration depth are computed numerically and presented graphically for a single crystal of magnesium. The effects of diffusion and relaxation times on phase velocity, attenuation coefficient, specific loss and penetration depth has been studied. Some particular cases are also discussed.  相似文献   

11.
所描述的工作聚焦于大延伸非均匀介质中非均匀弹性地震波散射问题的研究.应用Born近似及等效源原理,推出了来自连续横向无界非均匀层的弹性散射波的通解.这一工作是解决大延伸非均匀介质的弹性地震波多次散射问题的基础.在上述通解的基础上,建立了适用于大延伸非均匀介质的全弹性散射理论.该理论可包容小尺度非均匀体、大延伸非均匀介质全弹性波单次弱散射理论及标量波单次弱散射理论,因此可视其为一个更为广义和统一的弱散射理论.  相似文献   

12.
It has been known since the time of Biot–Gassman theory (Biot, J Acoust Soc Am 28:168–178, 1956, Gassmann, Naturf Ges Zurich 96:1–24, 1951) that additional seismic waves are predicted by a multicomponent theory. It is shown in this article that if the second or third phase is also an elastic medium then multiple p and s waves are predicted. Futhermore, since viscous dissipation no longer appears as an attenuation mechanism and the media are perfectly elastic, these waves propagate without attenuation. As well, these additional elastic waves contain information about the coupling of the elastic solids at the pore scale. Attempts to model such a medium as a single elastic solid causes this additional information to be misinterpreted. In the limit as the shear modulus of one of the solids tends to zero, it is shown that the equations of motion become identical to the equations of motion for a fluid filled porous medium when the viscosity of the fluid becomes zero. In this limit, an additional dilatational wave is predicted, which moves the fluid though the porous matrix much similar to a heart pumping blood through a body. This allows for a connection with studies which have been done on fluid-filled porous media (Spanos, 2002).  相似文献   

13.
The nonlinear interactions of longitudinal and shear waves in an isotropic solid medium are discussed in the nine-constant theory of elasticity. Expressions are obtained describing the generation of second and third harmonics of elastic waves in the approximations of a non-dispersive medium and in the presence of quasistatic elastic fields.  相似文献   

14.
A nonuniform crack growth problem is considered for a homogeneous isotropic elastic medium subjected to the action of remote oscillatory and static loads. In the case of a plane problem, the former results in Rayleigh waves propagating toward the crack tip. For the antiplane problem the shear waves play a similar role. Under the considered conditions the crack cannot move uniformly, and if the static prestress is not sufficiently high, the crack moves interruptedly. For fracture modes I and II the established, crack speed periodic regimes are examined. For mode III a complete transient solution is derived with the periodic regime as an asymptote. Examples of the crack motion are presented. The crack speed time-period and the time-averaged crack speeds are found. The ratio of the fracture energy to the energy carried by the Rayleigh wave is derived. An issue concerning two equivalent forms of the general solution is discussed.  相似文献   

15.
Dispersion of Stoneley waves is studied in a sedimentary layer of ocean bottom resting over basaltic solid half space. Sedimentary layer is assumed a transversely isotropic poroelastic medium. Lower-most solid half-space is assumed to be embedded with vertically aligned saturated micro-cracks and behaves transversely isotropic to wave propagation.Frequency equation is obtained in the form of determinantal equation. Role of phase angle is eliminated by expressing slowness of waves in terms of phase velocity and elastic constants. Numerical solutions for phase velocity and group velocity are obtained for a particular model. Calculations are made for different depths of ocean and sediments. Effect of thickness and density of cracks on these velocities are observed.Special cases are discussed which represent the absence of ocean and sediments, in the model considered. Changes in dispersion are discussed during the stress accumulation in an earthquake preparation region.  相似文献   

16.
In the present paper, we are interested in the propagation of Rayleigh waves in an isotropic elastic half-space coated with a thin isotropic elastic layer. The contact between the layer and the half space is assumed to be smooth. The main purpose of the paper is to establish an approximate secular equation of the wave. By using the effective boundary condition method, an approximate, yet highly accurate secular equation of fourth-order in terms of the dimensionless thickness of the layer is derived. From the secular equation obtained, an approximate formula of third-order for the velocity of Rayleigh waves is established. The approximate secular equation and the formula for the velocity obtained in this paper are potentially useful in many practical applications.  相似文献   

17.
We give a new proof of Kolodner's result that longitudinal waves can propagate in at least three directions in a hyperelastic anisotropic medium. We give examples of an orthotropic hyperelastic tensor with exactly three such directions, of a monoclinic elastic (but not hyperelastic) tensor with only one, and of a monoclinic elastic (elliptic, but not uniformly elliptic) tensor with no direction for longitudinal waves. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The dispersion law ceases to be linear already at ultrasonic frequencies of elastic vibrations of particles as mechanical perturbation waves propagate through the medium. A variant of the continuum model of an elastic medium is proposed which is based on the assumption of pair and triplet potential interaction between infinitely small particles; this allows one to represent the dispersion law with any required accuracy. The corresponding wave equation, which is still linear, can have an arbitrarily large order of partial derivatives with respect to the coordinates. It is suggested that the results of comparing the representations of the dispersion law from the elasticity and solid-state physics viewpoints should be used to determine nonclassical characteristics of the elastic state of the medium. The theoretical conclusions are illustrated with calculations performed for plane waves propagating through aluminum.  相似文献   

19.
The properties of acceleration waves are investigated for situations in which the waves propagate in isotropic heat-conducting elastic media subject to arbitrary sets of constraints. Conditions under which waves may exist in the presence of constraints are investigated for classes of constraints broad enough to encompass all those encountered in practice. Attention is focussed on principal waves, and results are presented for the growth of the amplitudes of such waves first for fronts of arbitrary curvature, and subsequently by specialisation for plane, cylindrical and spherical waves travelling in material which has undergone one-dimensional plane deformation, cylindrically symmetric and spherically symmetric deformation, respectively.  相似文献   

20.
Love waves are dispersive interfacial waves that are a mode of response for anti-plane motions of an elastic layer bonded to an elastic half-space. Similarly, Stoneley waves are interfacial waves in bonded contact of dissimilar elastic half-spaces, when the displacements are in the plane of the solids. It is shown that in slow sliding, long-wavelength Love and Stoneley waves are destabilized by friction. Friction is assumed to have a positive instantaneous logarithmic dependence on slip rate and a logarithmic rate weakening behavior at steady-state.Long-wavelength instabilities occur generically in sliding with rate- and state-dependent friction, even when an interfacial wave does not exist. For slip at low rates, such instabilities are quasi-static in nature, i.e., the phase velocity is negligibly small in comparison to a shear wave speed. The existence of an interfacial wave in bonded contact permits an instability to propagate with a speed of the order of a shear wave speed even in slow sliding, indicating that the quasi-static approximation is not valid in such problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号