首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new beam-dump experiment has been performed at the CERN Super Proton Synchrotron using the CHARM neutrino detector. The instrumentation and the statistics have been significantly improved with respect to earlier experiments. For a neutrino energy above 20 GeV the asymmetry of the prompt muon-neutrino and electron-neutrino fluxes \([(v_\mu + \bar v_\mu ) - (v_e + \bar v_e )]/[(v_\mu + \bar v_\mu ) + (v_e + \bar v_e )]\) is found to be 0.20±0.10 (stat.)±0.05 (syst.), and the asymmetry of prompt antineutrino and neutrino fluxes for muonneutrinos \((v_\mu - \bar v_\mu )/(v_\mu + \bar v_\mu )\) is 0.02±0.16 (stat.)±0.02 (syst.) in agreement with our previous results. For the cross-section times branching ratio for charm production and semileptonic decay we obtain a value of \(\sigma \times BR\left[ {D(\bar D) \to v_e (\bar v_e ) X} \right] = 1.9 \pm 0.2 \pm 0.2\mu b\) per nucleon. We find no evidence forv τ orv x interactions. The \((v_\tau + \bar v_\tau )\) flux is less than 21% of the total prompt neutrino flux. We derive an improved limit on the branching ratio \(\pi ^0 \to v\bar v\) of 6.5×10?6, and as a verification of the universality of the neutral weak coupling we find \(g_{v_e \bar v_e } /g_{v_\mu \bar v_\mu } = 1.05_{ - 0.18}^{ + 0.15} \) .  相似文献   

2.
New experimental results are presented on inclusive production properties of \(\bar \Sigma ^{ * + } \) (1385) and \(\bar \Sigma ^{ * + } \) (1385) inK + p interactions at 32 GeV/c. The analysis is based on significantly larger statistics than previously available. A comparison is also made of invariantx-distributions ofK 0/ \(\bar K^0 \) , \(\bar \Lambda \) and \(\bar \Xi ^ + \) and of \(\bar \Sigma ^{ * \pm } \) (1385) andK *+(892). These spectra exhibit regularities expected from the quark-recombination picture when it is assumed that the strange mesons and antibaryons are produced off the strange \(\bar s\) -valence-quark in the incidentK + meson. Transverse momentum distributions are also presented forK *+(892) and \(\bar \Sigma ^{ * \pm } \) (1385) and found to be very similar. The results on strange antibaryon average multiplicities disagree strongly with a recent version of the additive quark model.  相似文献   

3.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

4.
5.
Since weakly decaying particles are their own polarimeters, reactions like \(\eta _c \to \Lambda \bar \Lambda , \psi \to \Lambda \bar \Lambda ,e^ + e^ - \to \mu ^ + \mu ^ -\) , etc. are interesting for testing the non-locality of quantum mechanical predictions. Although such reactions, in principle, do not exclude all classes of hidden variable theories, they can be used to complement current experiments with external polarimeters. The reaction \(\eta _c \to \Lambda \bar \Lambda \to \pi ^ - p\pi ^{ + - } \bar p\) is conceptually the simplest and most useful as agedanken experiment, although it has not yet been seen experimentally. The reaction \(e^ + e^ - \to \Lambda \bar \Lambda \to \pi ^ - p\pi ^ + \bar p\) near threshold or at the φ resonance can be used for essentially the same test. This is feasible with presently available data and would be the first EPR experiment involving weak interactions.  相似文献   

6.
CP violation in partial-decay-rate asymmetries are examined for some two-body baryonic decays of \(B_d^0 - \bar B_d^0 \) system. We discuss two feasible experimental circumstances: the symmetrice + e ? collisions (i) on theZ 0 resonance to produce incoherent \(B_d^0 \bar B_d^0 \) states, and (ii) just above the ?(4S) resonance to produceC=even \(B_d^0 \bar B_d^0 \) states. Using the quark-diagram scheme, we estimate the branching ratios of those decays, and the numbers ofb \(\bar b\) pairs needed for testing theCP-violating effects for 3σ signature. We find that the promising channels may beB d 0 , \(\bar B_d^0 \to p\bar p\) , \(\Delta ^ + \bar \Delta ^ - \) , \(p\bar \Delta ^ - \) , \(\Delta ^ + \bar p\) , \(n\bar n\) , \(\Delta ^0 \bar \Delta ^0 \) , \(n\bar \Delta ^0 \) , \(\Delta ^0 \bar n\) , \(\Sigma _c^ + \bar \Sigma _c^ - \) , \(\Lambda _c^ + \bar \Lambda _c^ - \) , \(\Sigma _c^ + \bar \Lambda _c^ - \) , \(\Lambda _c^ + \bar \Sigma _c^ - \) , \(\Sigma _c^0 \bar \Sigma _c^0 \) , \(\Xi _c^0 \bar \Xi _c^0 \) , which should be interesting for experimental observation.  相似文献   

7.
The CNDO/S method has been applied to the internal effect of Si on the electronic spectrum of the acetone molecule; there is a considerable bathochromic shift and an increase in the \(S_0 \to S_{n\pi ^ * } \) intensity for theα-silyl ketones, while theβ-silyl ketons give only an increase in the intensity of \(S_0 \to S_{n\pi ^ * } \) absorption relative to acetone. The heavy atom substantially alters \(f_{S_0 \to T_{n\sigma ^* } } \) and \(\tau _{T_{n\sigma ^* } }^0 \) but has little effect on \(f_{S_0 \to T_{n\pi ^* } } \) and \(\tau _{T_{n\pi ^* } }^0 \) .  相似文献   

8.
An investigation of inclusivepp→π?+? in terms of the covariant Boltzmann factor (BF) including the chemical potential μ indicates a) that the temperatureT increases less rapidly than expected from Stefan's law, b) that a scaling property holds for the fibreball velocity of π? secondaries, leading to a multiplicity law like ~E cm 1/2 at high energy, and c) that μπ is related to the quark mass: μπ=2m q ?m π the quark massm q determined by \(T_{\pi ^ - } \) at \(\bar pp\) threshold beingm q =3Tπ?330 MeV. Because ofthreshold effects \(T_{\bar p}< T_{\pi ^ - } \) , whereas \({{\mu _p } \mathord{\left/ {\vphantom {{\mu _p } {\mu _{\pi ^ - } }}} \right. \kern-0em} {\mu _{\pi ^ - } }} \simeq {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}\) as expected from the quark contents of \(\bar p\) and π. The antinuclei \(\bar d\) and \({{\bar t} \mathord{\left/ {\vphantom {{\bar t} {\overline {He^3 } }}} \right. \kern-0em} {\overline {He^3 } }}\) observed inpp events are formed by coalescence of \(\bar p\) and \(\bar n\) produced in thepp collision. Semi-empirical formulae are proposed to estimate multiplicities of π?, \(\bar p\) and antinuclei.  相似文献   

9.
We here study directed self-avoiding walks on site diluted square lattice at the percolation threshold by two parameter real space renormalization group method. We found \(v_\parallel ^{p_c } = 1.00\) and \(v_ \bot ^{p_c } = 0.4348\) from cell-to-cell transformation method. This \(v_ \bot ^{p_c } \) value is then compared with the modified Alexander-Orbach formula that \(v_ \bot ^{p_c } = {{d_S } \mathord{\left/ {\vphantom {{d_S } {2d_L }}} \right. \kern-0em} {2d_L }}\) whered s is the fracton dimension andd L is the spreading dimension of the infinite directed percolation cluster.  相似文献   

10.
We interpret the recently observedU(3.1) mesons with the \(\Lambda \bar p\) + pions decays as the bound state of \(\Lambda ,\bar p\) andX 0(1480). TheX 0(1480) is a mesonium with \(Q^2 \bar Q^2 \) structures observed in γγ reactions and \(\bar pn\) annihilations. With this interpretation, we can understand its decay modes. Furthermore, we predict the ratio of \(\sigma (\Lambda \bar p\pi ^ + \pi ^ - )/\sigma (\Lambda \bar p\pi ^ + \pi ^ + )\) to be ?3.1 for centrally produced events and that the width of \(U^ - (\Lambda \bar p\pi ^ + \pi ^ - )\) to be greater than that of \(U^ + (\Lambda \bar p\pi ^ + \pi ^ + )\) . Both predictions seem to be in reasonable accord with the available data. We call for the detection of the \(\Lambda \bar p\pi ^ - \pi ^ - \) mode to verify the present interpretation.  相似文献   

11.
The average multiplicities of charged hadrons and of π+, π? and π0 mesons, produced in \(\bar v\) Ne and νNe charged current interactions in the forward and backward hemispheres of theW ±-nucleon center of mass system, are studied with data from BEBC. The dependence of the multiplicities on the hadronic mass (W) and on the laboratory rapidity (y Lab) and the energy fraction (z) of the pion is also investigated. Special care is taken to determine the π0 multiplicity accurately. The ratio of average π multiplicities \(\frac{{2\left\langle {n_{\pi ^O } } \right\rangle }}{{[\left\langle {n_{\pi ^ + } } \right\rangle + \left\langle {n_{\pi ^ - } } \right\rangle ]}}\) is consistent with 1. In the backward hemisphere \(\left\langle {n_{\pi ^O } } \right\rangle \) is positively correlated with the charged multiplicity. This correlation, as well as differences in multiplicities between \(\mathop v\limits^{( - )} \) and \(\mathop v\limits^{( - )} \) , \(\mathop v\limits^{( - )} \) scattering, is attributed to reinteractions inside the neon nucleus of the hadrons produced in the initial \(\mathop v\limits^{( - )} \) interaction.  相似文献   

12.
S. Barlag  P. van Dam  E. De Wolf  B. Jongejans  A. Tenner  C. Visser  R. Wigmans  P. Capiluppi  F. Fabbri  G. Giacomelli  G. Mandrioli  P. Mazzanti  A. M. Rossi  P. Serra-Lugaresi  M. Baldo-Ceolin  F. Bobisut  E. Calimani  S. Ciampolillo  H. Huzita  C. Angelini  L. Bertanza  A. Bigi  R. Casali  R. Fantechi  V. Flaminio  A. Nappi  R. Pazzi  C. Petri  G. Pierazzini  M. Bloch  T. Bolognese  J. Derkaoui  M. L. Faccini-Turluer  A. Fridman  C. Louedec  L. Mosca  J. Saudraix  D. Vignaud  D. Allasia  F. Bianchi  V. Bisi  D. Gamba  A. Marzari-Chiesa  L. Ramello  L. Riccati  A. Romero  Amsterdam-Bologna-Padova-Pisa-Saclay-Torino Collaboration 《Zeitschrift fur Physik C Particles and Fields》1982,11(4):283-292
Charged hadron multiplicity distributions in \(\bar v_\mu n\) and \(\bar v_\mu p\) interactions in the energy range \(5< E_{\bar v}< 150GeV\) GeV are presented. They are obtained from about \(6000\bar v_\mu \) charged current events produced in BEBC filled with deuterium. Multiplicity moments are studied as a function of the invariant mass of the hadronic systemW. Results on multiplicity distributions in the forward and backward directions in the hadronic c.m.s. are presented and discussed within the framework of the quark parton model. Values for the average charge of the forward jet are also determined and compared with other experimental data.  相似文献   

13.
Effects from an extended Higgs sector on the partial widths \(\Gamma _{{\rm Z} \to b\bar b} \) and \(\Gamma _{{\rm Z} \to \tau ^ + \tau ^ - } \) are analysed with emphasis on enhanced Yukawa couplings to the fermions with the weak isospinT 3=?1/2. Contributions from charged and neutral Higgs bosons are incorporated. Vertex corrections from a heavy top quark and from charged Higgs bosons are always negative. One can however find regions in the parameter space where neutral Higgs bosons lead to positive vertex corrections. The charged Higgs bosons decouple from the ratio \(\Gamma ^{_{{\rm Z} \to \tau ^ + \tau ^ - } } /\Gamma ^{_{{\rm Z} \to \mu ^ + \mu ^ - } } \) if their mass is beyond 80 GeV. This ratio is then sensitive to the neutral sector only.  相似文献   

14.
We present a study of \(B\bar B\) meson pair production inπ ? interactions at 140, 194 and 286 GeV incident pion energy. At 286 GeV, where we have the best statistics, we find a model-dependent \(B\bar B\) production cross-section \(\sigma _{BB} = 14_{ - 6}^{ + 7} nb/nucleon\) .  相似文献   

15.
Consequences of the existence of an invariant (necessarily indefinite) non-degenerate inner product for an indecomposable representation π of a groupG on a space \(\mathfrak{H}\) are studied. If π has an irreducible subrepresentation π1 on a subspace \(\mathfrak{H}_1 \) , it is shown that there exists an invariant subspace \(\mathfrak{H}_2 \) of \(\mathfrak{H}\) containing \(\mathfrak{H}_1 \) and satisfying the following conditions: (1) the representation π 1 # =π mod \(\mathfrak{H}_2 \) on \(\mathfrak{H}\) mod \(\mathfrak{H}_2 \) is conjugate to the representation (π1, \(\mathfrak{H}_1 \) ), (2) \(\mathfrak{H}_1 \) is a null space for the inner product, and (3) the induced inner product on \(\mathfrak{H}_2 \) mod \(\mathfrak{H}_1 \) is non-degenerate and invariant for the representation $$\pi _2 = (\pi _2 |_{\mathfrak{H}_2 } )\bmod \mathfrak{H}_1 ,$$ a special example being the Gupta-Bleuler triplet for the one-particle space of the free classical electromagnetic field with \(\mathfrak{H}_1 \) =space of longitudinal photons and \(\mathfrak{H}_2 \) =the space defined by the subsidiary condition.  相似文献   

16.
17.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

18.
The charged hyperon beam at the CERN Super Proton Synchrotron (SPS) has been used to collect data on semileptonic decays of Σ?, Ξ?, andΛ. A magnetic channel selected 100 GeV/c negatively charged particles produced in the forward direction by interaction of a 210 GeV/c proton beam on a BeO target. The Σ? and Ξ? hyperons were concurrently identified in a DISC ?erenkov counter, and their decay products were analysed by a magnetic spectrometer. Electron-hadron discrimination was achieved by the combined use of lead glass and lead/scintillator counters, transition radiation detectors, and a ?erenkov counter. In this article we report results on the \(\Xi \to \Lambda \pi (\Lambda \to pe\bar v), \Xi \to \Lambda e\bar v(\Lambda \to p\pi ),\) and \(\Xi \to \sum ^0 e\bar v(\sum ^0 \to \Lambda \gamma ) (\Lambda \to p\pi )\) decay modes. Samples of 7,111 \(\Lambda \to pe\bar v, 2,608 \Xi \to \Lambda e\bar v\) , and \(154 \Xi \to \Sigma ^0 e\bar v\) were used in our analysis. The branching ratio measurements gave values of (8.57±0.36)×10?4, (5.64±0.31)×10?4, and (0.87±0.17)×10?4 for \(\Lambda \to pe\bar v, \Xi \to \Lambda e\bar v\) , and \( \Xi \to \sum ^0 e\bar v\) , respectively. Measurements of the Λ polarization and of the centre-of-mass distributions yield the axial vector to vector form factor ratio,g 1/f 1=+0.70±0.03 for \(\Lambda \to pe\bar v\) , andg 1/f 1=+0.25±0.05 for \(\Xi \to \Lambda e\bar v\) . The effects ofq 2-dependence off 1 andg 1 and of radiative corrections, the measurement of the weak magnetism termf 2, and the effect of possible second-class current terms are discussed. Results on the \(\sum \to \Lambda e\bar v\) and \(\sum \to ne\bar v\) decay modes are reported in separate articles.  相似文献   

19.
Several new levels including two isomeric states have been established in134Ba. Spin and parity assignments of 10+ and 5? are proposed for the isomers. The former may have a \(\left( {vh_{1 1/2} } \right)_{10^ + } \) configuration while the latter may be either \((vs_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} vh_{{{11} \mathord{\left/ {\vphantom {{11} 2}} \right. \kern-0em} 2}} )_{5 - } \) or \(\left( {vd_{3/2} vh_{1 1/2} } \right)_{5^ - } \) .  相似文献   

20.
The asymmetry parameters \(\alpha _{\beta ^ \mp } \) of the beta-ray emitted from aligned12B and12N are evaluated as a function of the energy. The agreement with experimental differential data is excellent for both \(\alpha _{\beta ^ - } \) (W) and \(\alpha _{\beta ^ + } \) (W). This work confirms, using available nuclear model information, that no induced pseudotensor (IPT) interaction is required for a correct theoretical interpretation of the data. An upper limit for the IPT coupling constantf T is determined from a simultaneous fit of \(\alpha _{\beta ^ - } \) (W) and \(\alpha _{\beta ^ + } \) (W).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号