首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于立体像素匹配的图像重构技术研究   总被引:1,自引:0,他引:1  
朴燕 《光子学报》2008,37(12):2560-2563
为了解决目前全景成像技术中分辨率低的问题,提出了一种新的基于3D场景立体像素光线映射的全景图像计算机重构技术.在全景成像技术中,3D场景的每个立体像素点经全景成像系统的编码系统分别映射在一定区域的多个体元素图像的不同像素点上.在计算机重构全景图像时,根据逆光学路径原理,提出了从立体像素映射到的体元素图像区域中提取对应立体像素的多个2D像素点来重构全景图像,使重构的全景图像最大分辨率可达到传统成像方法图像分辨率的N倍(N为映射区域面积).提出的立体像素的匹配技术大大提高了重构的计算机全景图像分辨率.  相似文献   

2.
In this paper, we propose a novel performance-enhanced computational integral imaging reconstruction (CIIR) scheme by additional use of an imaging lens. In the proposed scheme, elemental images can be obtained by using a simultaneous pickup scheme of far three-dimensional (3D) objects from the lenslet array in both real and virtual image fields. And additional imaging lens produces an image shift effect of 3D objects located far away from the lenslet array and improve the visual quality of reconstructed images in CIIR by overcoming limitation of pickup range in integral imaging. To show the usefulness of the proposed system, some experiments are carried out for real 3D objects and its results are presented.  相似文献   

3.
王宇  陈殿仁  朴燕  杨絮  陈玉群 《光子学报》2014,38(11):2968-2971
为了解决全景成像技术中观察者位于观察区域之外看到的图像会存在失真的问题,提出了一种基于视差信息的计算机重构3D视图技术.利用3D场景中的物体点经过不同微透镜在元素图像中记录的视差信息,根据光学路径分析,对重构视图中的失真部分用其它元素图像中存在的同一物体点的匹配像素进行替代,从而得到无失真的3D视图.该技术能够在更宽的观察区域内产生3D图像.  相似文献   

4.
为了解决全景成像技术中观察者位于观察区域之外看到的图像会存在失真的问题,提出了一种基于视差信息的计算机重构3D视图技术.利用3D场景中的物体点经过不同微透镜在元素图像中记录的视差信息,根据光学路径分析,对重构视图中的失真部分用其它元素图像中存在的同一物体点的匹配像素进行替代,从而得到无失真的3D视图.该技术能够在更宽的观察区域内产生3D图像.  相似文献   

5.
Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.  相似文献   

6.
In this paper, we propose a computational depth conversion method based on the lenslet model to display the orthoscopic 3D images in 3D integral imaging display. The proposed method permits the synthesis of elemental images for the orthoscopic 3D images at any arbitrary position without any restrictions and requires no additional procedure during the depth conversion process. Due to the lenslet model involved in the depth conversion procedure, the proposed method can broaden the flexibility of 3D image reconstruction in the integral imaging display system. We carry out the preliminary experiments to prove the feasibility of the proposed method. The experimental results reveal that the proposed method is an effective depth conversion method that allows the reconstruction of the orthoscopic 3D images at any arbitrary position.  相似文献   

7.
In this paper, we propose an image encryption technique to simultaneously encrypt double or multiple images into one encrypted image using computational integral imaging (CII) and fractional Fourier transform (FrFT). In the encryption, each of the input plane images are located at different positions along a pickup plane, and simultaneously recorded in the form of an elemental image array (EIA) through a lenslet array. The recorded EIA to be encrypted is multiplied by FrFT with two different fractional orders. In order to mitigate the drawbacks of occlusion noise in computational integral imaging reconstruction (CIIR), the plane images can be reconstructed using a modified CIIR technique. To further improve the solution of the reconstructed plane images, a block matching algorithm is also introduced. Numerical simulation results verify the feasibility and effectiveness of the proposed method.  相似文献   

8.
In this paper, a novel resolution-enhanced three-dimensional (3D) image correlator using the computationally reconstructed integral images is proposed in order to extract target object’s 3D location data in a scene. Elemental images of the reference and target objects are picked up by lenslet arrays and using these elemental images, reference and target plane images are reconstructed on the output plane by means of a modified computational integral imaging reconstruction technique. Then, through cross-correlations between the reconstructed reference and the target plane images, 3D location data of the target object can be extracted from the correlation outputs. With the purpose of showing the feasibility of the proposed method, some computational and optical experiments on the target objects in space are carried out and the results are presented.  相似文献   

9.
研究了计算机重构三维图像时分辨率低的问题,提出一种改善3D计算机全景重构图像的视觉质量的方法,该方法利用3D空间的物体部分在每个元素图像中形成的匹配区域的纹理特征,从两个相邻的元素图像中的匹配区域提取出多个像素,经过加权计算重构出相应的图像区域.该方法与传统的计算机重构方法相比,提高了图像分辨率,同时也消除了从每个元素图像中提取多个像素直接重构图像时存在的"像素块"效应,改善了重构图像的视觉质量.  相似文献   

10.
In this paper, we propose an occlusion removal technique for improved recognition of 3D objects that are partially occluded in computational integral imaging (CII). In the reconstruction process of a 3D object which is partially occluded by other objects, occlusion degrades the resolution of reconstructed 3D images and thus this affects negatively the recognition of a 3D object in CII. To overcome this problem, we introduce a method to eliminate occluding objects in elemental image array (EIA) and the proposed method is applied to 3D object recognition by use of CII. To our best knowledge, this is the first time to remove occlusion in CII. In our method, we apply the elemental image to sub-image (ES) transform to EIA obtained by a pickup process and those sub-images are employed for occlusion removal. After the transformation, we correlate those sub-images with a reference sub-image to locate occluding objects and then we eliminate the objects. The inverse ES transform provides a modified EIA. Actually, the modified EIA is considered to be an EIA without the object that occludes the object to be reconstructed. This can provide a substantial gain in terms of the image quality of 3D objects and in terms of recognition performance. To verify the usefulness of the proposed technique, some experimental results are carried out and the results are presented.  相似文献   

11.
Shin D  Javidi B 《Optics letters》2012,37(11):2130-2132
In this Letter, we propose an improved three-dimensional (3D) image reconstruction method for integral imaging. We use subpixel sensing of the optical rays of the 3D scene projected onto the image sensor. When reconstructing the 3D image, we use a calculated minimum subpixel distance for each sensor pixel instead of the average pixel value of integrated pixels from elemental images. The minimum subpixel distance is defined by measuring the distance between the center of the sensor pixel and the physical position of the imaging lens point spread function onto the sensor, which is projected from each reconstruction point for all elemental images. To show the usefulness of the proposed method, preliminary 3D imaging experiments are presented. Experimental results reveal that the proposed method may improve 3D imaging visualization because of the superior sensing and reconstruction of optical ray direction and intensity information for 3D objects.  相似文献   

12.
A novel three-dimensional (3D) image encryption approach by using the computer-generated integral imaging and cellular automata transform (CAT) is proposed, in which, the two-dimensional (2D) elemental image array (EIA) digitally recorded by light rays coming from the 3D image is mapped inversely through the virtual pinhole array according to the ray-tracing theory. Next, the encrypted image is generated by using the 2D CAT scrambling transform for the 2D EIA. The reconstructed process is carried out by using the modified computational integral-imaging reconstruction (CIIR) technique; the depth-dependent plane images are reconstructed on the output plane. The reconstructed 3D image quality of the proposed scheme can be greatly improved, because the proposed encryption scheme carries out in a computer which can avoid the light diffraction caused by optical device CIIR, and solves blur problem caused by CIIR by using the pixel-averaging algorithm. Furthermore, the CAT-based encryption algorithm is an error-free encryption method; CAT as an orthogonal transformation offers considerable simplicity in the calculation of the transform coefficient, that is, it can improve the quality of the reconstructed image by reducing energy loss compared with the traditional complicated transform process. To show the effectiveness of the proposed scheme, we perform computational experiments. Experimental results show that the proposed scheme outperforms conventional encryption methods.  相似文献   

13.
In this Letter, we propose a three-dimensional(3D) image reconstruction method with a controllable overlapping number of elemental images in computational integral imaging. The proposed method can control the overlapping number of pixels coming from the elemental images by using the subpixel distance based on ray optics between a 3D object and an image sensor. The use of a controllable overlapping number enables us to provide an improved 3D image visualization by controlling the inter-pixel interference within the reconstructed pixels.To find the optimal overlapping number, we simulate the pickup and reconstruction processes and utilize the numerical reconstruction results using a peak signal-to-noise ratio(PSNR) metric. To demonstrate the feasibility of our work in optical experiments, we carry out the preliminary experiments and present the results.  相似文献   

14.
In this paper, we propose an enhanced computational integral imaging system by both eliminating the occlusion in the elemental images recorded from the partially occluded 3D object and recovering the entire elemental images of the 3D object. In the proposed system, we first obtain the elemental images for partially occluded object using computational integral imaging system and it is transformed to sub-images. Then we eliminate the occlusion within the sub-images by use of an occlusion removal technique. To compensate the removed part from occlusion-removed sub-images, we use a recursive application of PCA reconstruction and error compensation. Finally, we generate the entire elemental images without a loss from the newly reconstructed sub-images and perform the process of object recognition. To show the usefulness of the proposed system, we carry out the computational experiments for face recognition and its results are presented. Our experimental results show that the proposed system might improve the recognition performance dramatically.  相似文献   

15.
In this paper, we propose a method that controls the depth of the three-dimensional (3D) object existing over the depth-of-focus in integral imaging. The depth control method is performed only in a computer by synthesizing the intermediate sub-images between original sub-images obtained by transforming the captured elemental images. In the reconstruction process, we can obtain reconstructed 3D images with the better image quality within depth-of-focus than that reconstructed over the depth-of-focus. To demonstrate the feasibility of our method, optical and computational experiments are carried out and its results are presented.  相似文献   

16.
We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays(PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array(EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method.To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.  相似文献   

17.
This paper presents an improved depth extraction method of 3D objects using computational integral imaging reconstruction (CIIR) based on the multiple windowing models. The proposed method records 3D objects using the lenslet array; and it reconstructs multiple sets of slice images from multiple CIIR methods based on the different windowing models. A depth map is then extracted by a block matching algorithm among multiple set of slice images. A preliminary experiment is carried out to show the feasibility of the proposed method. Experimental results indicate the proposed method outperforms the previous method with two windowing models.  相似文献   

18.
Shin D  Javidi B 《Optics letters》2012,37(9):1394-1396
In this Letter, we propose a multiperspective three-dimensional (3D) imaging system using axially distributed stereo image sensing. In this proposed method, the stereo camera is translated along its optical axis and multiple axial elemental image pairs for a 3D scene are collected. The captured elemental images are reconstructed in 3D using a computational reconstruction algorithm based on ray back-projection. The proposed method is applied to partially occluded object visualization. Optical experiments are performed to verify the approach.  相似文献   

19.
In this Letter, we propose a three-dimensional(3D) free view reconstruction technique in axially distributed image sensing(ADS). In typical integral imaging, free view reconstructed images can be obtained by tilting all elemental images or tilting the reconstruction plane due to large lateral perspectives for 3D objects. In conventional ADS, the reconstructed images at only a front view can be generated since the sensor is moved along with its optical axis so that it has small lateral perspectives for 3D objects. However, the reconstructed 3D images at any viewing point may be obtained because the virtual viewing camera may capture these slightly different perspectives for 3D objects. Therefore, in this Letter, we employ the virtual viewing camera to visualize the 3D images at the arbitrary viewing point. To support our proposed method, we show the experimental results.  相似文献   

20.
A novel integral imaging-based three-dimensional (3D) digital watermarking scheme is presented. In the proposed method, an elemental image array (EIA) obtained by recording the rays coming from a 3D object through a pinhole array in the integral imaging system is employed as a new 3D watermark. The EIA is composed of a number of small elemental images having their own perspectives of a 3D object, and from this recorded EIA various depth-dependent 3D object images can be reconstructed by using the computational integral imaging reconstruction (CIIR) technique. This 3D property of the EIA watermark can make a robust reconstruction of the watermark image available even though there are some data losses in the embedded watermark by attacks. To show the robustness of the proposed scheme against attacks, some experiments are carried out and the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号