首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polylactic acid (PLA) is a widely used bioresorbable polymer in medical devices owing to its biocompatibility, bioresorbability, and biodegradability. It is also considered a sustainable solution for a wide variety of other applications, including packaging. Because of its widespread use, there have been many studies evaluating this polymer. However, gaps still exist in our understanding of the hydrolytic degradation in extreme pH environments and its impact on physical and mechanical properties, especially in fibrous materials. The goal of this work is to explore the hydrolytic degradation of PLA fibers as a function of a wide range of pH values and exposure times. To complement the experimental measurements, molecular-level details were obtained using both molecular dynamics (MD) simulations with ReaxFF and density functional theory (DFT) calculations. The hydrolytic degradation of PLA fibers from both experiments and simulations was observed to have a faster rate of degradation in alkaline conditions, with 40% of strength loss of the fibers in just 25 days together with an increase in the percent crystallinity of the degraded samples. Additionally, surface erosion was observed in these PLA fibers, especially in extreme alkaline environments, in contrast to bulk erosion observed in molded PLA grafts and other materials, which is attributed to the increased crystallinity induced during the fiber spinning process. These results indicate that spun PLA fibers function in a predictable manner as a bioresorbable medical device when totally degraded at end-of-life in more alkaline conditions.  相似文献   

2.
In this overview study, two ionic liquids (IL) with different anions (decanoate, tetrafluoroborate) but with the same phosphonium-based cation that showed promising plasticizing/lubricating behavior in polylactic acid (PLA) were screened for their effects on the polymer degradation under thermomechanical, thermo-oxidative (at 160 °C), hydrolytic (100% humidity, 60 °C), conditions, and during soil immersion. Depending on the particular medium and conditions used, degradation was followed by changes in molecular weight, melt viscosity, sample weight and appearance, morphology, crystallinity, acid number, and pH. The effects of the IL containing a decanoate anion were more pronounced on lubrication and also on degradation as evidenced by reduced melt viscosities and accelerated thermomechanical, isothermal, hydrolytic, and soil degradation. The IL containing the tetrafluoroborate anion showed higher thermal stability compared with the IL containing decanoate anion as also confirmed from thermal degradation rate constants which were calculated from random chain scission statistics. Accelerated hydrolytic degradation was observed in PLA containing the tetrafluoroborate based IL but to a lesser extent than the decanoate based IL. The catalytic role of the decanoate anion in hydrolytic degradation was confirmed through experiments with model compounds. X-ray diffraction (XRD) data on the materials exposed to soil degradation provided evidence that the initially amorphous polymer attained a certain degree of crystallinity as a result of the significant MW reduction.  相似文献   

3.
The mechanism of degradation of bioresorbable lactic acid- and glycolic acid-based aliphatic polyesters (PLA/GA) is still far from being totally understood although a majority of authors agree to consider in vivo degradation as essentially hydrolytic. In the past years, we have shown that hydrolysis of large size devices is heterogeneous, i.e. faster inside than at the surface because of reaction-diffusion phenomena involving acid-catalyzed ester cleavage reactions and water-soluble macromolecular fragments. The proposed mechanism is recalled together with some direct or indirect consequences, namely induced crystallization at body temperature, size- and formulation-dependence of the degradation rates. From these features, one can conclude that it is now possible to increase or decrease the degradation rate and to turn on or off heterogeneous degradation by using accelerating or braking factors, however, accurate piloting of the hydrolytic degradation of PLA/GA is still not feasible.  相似文献   

4.

The present analytical survey explores different aspects of hydrolytic degradation of drug dosage forms (DF) based on polylactides, homopolymers of lactic acid (PLA) and copolymers of lactic and glycolic acids (PLGA). The study includes various scientific data from multiple sources describing the effect of the PLGA nanocarrier hydrolytic degradation rate on the profile of drug release from the DFs intended for intravenous and intramuscular administration, including micro- and nanoparticles, and implants. The following aspects are explored in the review: design of experiments aimed at studying the hydrolytic degradation kinetics of PLGA carriers; commonly employed analytical methods; interpretation of the mechanism of PLGA-based DF hydrolytic degradation; factors that influence the hydrolytic degradation rate of PLGA drug carriers as part of DFs; interrelation between the processes of polymer carrier hydrolytic degradation and drug substance release from the PLGA-based DFs.

  相似文献   

5.
Morphological behaviour of poly(lactic acid) during hydrolytic degradation   总被引:1,自引:0,他引:1  
The hydrolytic degradation and the morphological behaviour of a packaging grade of poly(lactic acid) (PLA) were characterized by a series of techniques. During the initial degradation process (stage 1) at a temperature near the glass transition temperature (Tg), the molecular weight of PLA decreased as degradation time increased following a bulk erosion mechanism while the crystallinity increased simultaneously, but no observable weight loss occurred at stage 1. Mainly α-form PLA crystal structure was formed for the crystalline PLA with a low content of d stereo-isomers, but the material displayed a lower regularity, smaller domain size, lower melting temperatures Tm and different motional dynamics as compared to the original PLA with a similar level of crystallinity achieved by annealing. The amorphous PLA with a higher amount of d stereo-isomers also yielded the α crystalline phase as well as stereo-complex crystals at stage 1. When the molecular weight and the crystallinity reached a stable level, PLA started erosion into the degrading aqueous medium. During this stage of degradation (stage 2), the crystalline structure in PLA residues was further modified and both pH and temperature influenced the modification. The degradation at stage 2 was likely to follow a surface erosion mechanism with lactic acid as the major product of the weight loss. Besides the crystallinity effect on the degradation, temperature also played a key role in determining the rate of PLA degradation in both stages. The process was very slow at temperatures below the Tg of PLA but the rate was greatly enhanced at temperatures above the Tg.  相似文献   

6.
Cationic bulk polymerization of L ,L‐ lactide (LA) initiated by trifluromethanesulfonic acid [triflic acid (TfA)] has been studied. At temperatures 120–160 °C, polymerization proceeded to high conversion (>90% within ~8 h) giving polymers with Mn ~ 2 × 104 and relatively high dispersity. Thermogravimetric analysis of resulting polylactide (PLA) indicated that its thermal stability was considerably higher than the thermal stability of linear PLA of comparable molecular weight obtained with ROH/Sn(Oct)2 initiating system. Also hydrolytic stability of cationically prepared PLA was significantly higher than hydrolytic stability of linear PLA. Because thermal or hydrolytic degradation of PLA starting from end‐groups is considerably faster than random chain scission, both thermal and hydrolytic stability depend on molecular weight of the polymer. High thermal and hydrolytic stability, in spite of moderate molecular weight of cationically prepared PLA, indicate that the fraction of end‐groups is considerably lower than in linear PLA of comparable molecular weight. According to proposed mechanism of cationic LA polymerization growing macromolecules are fitted with terminal ? OH and ? C(O)OSO2CF3 end‐groups. The presence of those groups allows efficient end‐to‐end cyclization. Cyclic nature of resulting PLA explains its higher thermal and hydrolytic stability as compared with linear PLA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2650–2658, 2010  相似文献   

7.
PLA and its nanocomposite films based on modified montmorillonite (CLO30B) or fluorohectorite (SOM MEE) and unmodified sepiolite (SEPS9) were processed at a clay loading of 5 wt% and hydrolytically degraded at 37 and 58 °C in a pH 7.0 phosphate-buffered solution. An effective hydrolytic degradation for neat PLA and nanocomposites was obtained at both temperatures of degradation, with higher extent at 58 °C due to more extensive micro-structural changes and molecular rearrangements, allowing a higher water absorption into the polymer matrix.The addition of CLO30B and SEPS9 delayed the degradation of PLA at 37 °C due to their inducing PLA crystallization effect and/or to their high water uptake reducing the amount of water available for polymer matrix hydrolysis. The presence of SOM MEE also induced polymer crystallization, but it was also found to catalyze hydrolysis of PLA. Concerning hydrolysis at 58 °C, the presence of any nanoparticle did not significantly affect the degradation trend of PLA, achieving similar molecular weight decreases for all the studied materials. This was related to the easy access of water molecules to the bulk material at this temperature, minimizing the effect of polymer crystallinity clay nature and aspect ratio on the polymer degradation.  相似文献   

8.
Pyrolysis-GC-MS of polylactide (PLA) biocomposites before and after hydrolytic degradation revealed prominent differences in the hydrolytic degradation process of rice bran and wood flour filled biocomposites. The water uptake and mass loss for polylactide/wood flour composites were similar to that of plain PLA. Pyrolysis-GC-MS, however, showed that on prolonged ageing the hydrolysis of PLA led to increased wood flour concentration in the remaining biocomposite matrices. In contrast, the polylactide/rice bran composites exhibited larger water uptake and higher mass loss. Pyrolysis-GC-MS and FTIR analysis proved that the higher mass loss was caused by migration of rice bran from the composites. The type of natural filler could thus greatly influence the degradation process and/or the stability of the materials in aqueous or humid environments.  相似文献   

9.
Aliphatic polyesters, especially those derived from lactide (PLA), glycolide (PGA) and ε-caprolactone (PCL), are being investigated worldwide for applications in the field of surgery (suture material, devices for internal bone fracture fixation), pharmacology (sustained drug delivery systems), and tissue engineering (scaffold for tissue regeneration) [1,2]. This is mainly due to their good biocompatibility and variable degradability. These polymers present also a growing interest for environmental applications in agriculture (mulch films) and in our everyday life (packaging material)as the development of biodegradable materials is now considered as one of the potential solutions to the problem of plastic waste management.For both biomedical and environmental applications, it is of major importance to understand the degradation characteristics of the polymers. The hydrolytic degradation of aliphatic polyesters has been investigated by many research groups. Our group has shown that degradation of PLAGA large size devices is faster inside than at the surface. This heterogeneous degradation is due to the autocatalytic effect of carboxylic endgroups formed by ester bond cleavage. Moreover,degradation-induced morphological and compositional changes were also elucidated. In the case of PCL, the hydrolytic degradation is very slow due to its hydrophobicity and crystallinity.The enzymatic degradation of these polymers has been investigated by a number of authors. A specific enzyme, proteinase K, has been shown to have significant effects on PLA degradation. This enzyme preferentially degrade L-lactate units as opposed to D-lactate ones, amorphous zones as opposed to crystalline ones [3]. The enzymatic degradation of PCL polymers has also been investigated. A number of lipase-type enzymes were found to significantly accelerate the degradation of PCL despite its high crystallinity. In the case of PLA/PCL blends, the two components exhibited well separated crystalline domains. The selective degradation of PCL or PLA components by enzymes revealed the inner morphology of the blends with formation of microsphere-like or island-like structures [5].  相似文献   

10.
Polylactide (PLA) crosslinked by using both triallyl isocyanurate (TAIC) and electron radiation or using dicumyl peroxide (DCP) was studied with the aim of examining the behaviour of the modified polymer under various environmental conditions. Thus, the polymer samples were subjected to composting in an industrial pile, exposed to proteinase K, or incubated in sea water. The number-average molecular weight (Mn), melt flow index (MFI), crystallinity (χ), tensile strength (σM) and mass loss (in the case of samples treated with proteinase K) were determined. It was found that neat PLA irradiated with high-energy electrons underwent degradation that increased during composting. As a result, the value of Mn of this polymer dramatically decreased. It appeared that PLA crosslinked with TAIC and electron radiation contained, in addition to the crosslinked phase, a phase strongly degraded by this radiation, which facilitated hydrolytic degradation during composting. The σM value of PLA crosslinked with TAIC and electron radiation rapidly decreased during composting, whereas that of PLA crosslinked chemically and composted for three weeks slightly increased. As the electron radiation dose increased, the mass loss of PLA containing TAIC and treated with proteinase K decreased, which indicated that the physical crosslinking of PLA hindered enzymatic degradation of this polymer. Important changes in both neat and physically crosslinked PLA incubated in sea water for nine weeks were not detected.  相似文献   

11.
The purpose of this study was to evaluate the effects of hydrolytic degradation on the properties of a PLA hollow braid designed as a new concept of biodegradable prosthesis for the regeneration of tendons and ligaments. The main function of the braided material is to bear mechanical loads while it is being replaced by the newly-generated tissue. The kinetics of braided material degradation is thus an important factor in determining the success of the product. In order to study this mechanism, PLA braid was subjected to a 12-month degradation process at 37 °C in PBS at pH 7.4 (to simulate the human physiological medium) and to accelerated degradation for one month in pH 12 and pH 3 solutions. Degradation of the braid subjected to hydrolysis was evaluated by weight loss, molecular weight distribution, mechanical properties, and calorimetric and morphologic analyses. The weight loss in a basic medium reached 21%, versus no significant change in the other media. Average molecular weight was reduced by approximately 50% in the three media, with loss of mechanical properties in all cases. The morphological changes were more evident in the PLA degraded in the basic medium. The crystallinity of the material increased at the first stages of degradation, regardless of the medium used.  相似文献   

12.
A carbodiimide-based additive, intended to stabilize PLA based materials to avoid hydrolytic degradation during processing, was incorporated into a series of PLA and nanofiller containing PLA films. The influence of the additive on the subsequent degradability of the materials was studied under the conditions of melt processing, biodegradation in compost and abiotic hydrolysis. Identical films without the additive were used as reference materials. Adding an anti-hydrolysis agent significantly retarded the decomposition of PLA in all the degradation processes tested. Both biodegradation and the abiotic hydrolysis of the PLA-based materials investigated were substantially retarded. This effect was much less pronounced in a material with organically modified montmorillonite.  相似文献   

13.
Two novel biodegradable copolymers, including poly(ethylene glycol)-succinate copolymer (PES) and poly(ethylene glycol)-succinate-l-lactide copolymer (PESL), have been successfully synthesized via melt polycondensation using SnCl2 as a catalyst. The copolymers were used to toughen PLA by melt blending. The DSC and SEM results indicated that the two copolymers were compatible well with PLA, and the compatibility of PESL was superior to that of PES. The results of tensile testing showed that the extensibility of PLA was largely improved by blending with PES or PESL. At same blending ratios, the elongation at break of PLA/PESL blends was far higher than that of PLA/PES ones. The elongation maintained stable through aging for 3 months. The moisture absorption of the blends enhanced due to the strong moisture absorption of PEG segments in PES or PESL molecules, which did not directly lead to enhance the hydrolytic degradation rate of the PLA. The PLA blends containing 20–30 wt% PES or PESL were high transparent materials with high light scattering. The toughening PLA materials could potentially be used as a soft biodegradable packaging material or a special optical material.  相似文献   

14.
Management of moisture penetration and hydrolytic degradation of polylactide (PLA) is extremely important during the manufacturing, shipping, storage, and end-use of PLA products. Moisture transport, crystallization, and degradation, in PLA have been measured through a variety of experimental techniques including size-exclusion chromatography, differential scanning calorimetry, and X-ray diffraction. Quartz crystal microbalance and dynamic vapor sorption experiments have also been used to measure moisture sorption isotherms in PLA films with varying crystallinity. A surprising result is that, within the accuracy of the experiments, crystalline and amorphous PLA films exhibit identical sorption isotherms.  相似文献   

15.
Photochemical transformations of photoactive diketone derivatives, 1,2-diphenylethane-1,2-dione (benzil, BZ) and 1,4-bis(benzoylcarbonyl)benzene (bisbenzil, BIS), and the effects of their transformations on changes in the molecular characteristics and hydrolytic properties of poly(ε-caprolactone) (PCL) and polylactide (PLA) matrices are reported. Studies were performed in a broad dopant concentration range of 0.2–7.5 wt%. Structural changes were observed by FTIR spectroscopy. FTIR spectroscopy proved the progressive transformation of BZ to benzoyl peroxides and, in the case of PCL, the formation of polar groups. Changes in molecular characteristics were observed in GPC traces. Irradiation of the doped polymer films at λ > 400 nm under an air atmosphere resulted mainly in the degradation of the polymer matrices. Additionally, high dopant concentrations in PCL led to partially crosslinked structures with gel contents up to 15%. The photochemical transformation of dopants had a large impact on the PCL matrices compared to that of the PLA matrices. A subsequent hydrolysis process was investigated by determining the extractable products as well as using GPC. Hydrolysis of irradiated PCL samples showed a significant acceleration of hydrolysis compared to that of nonirradiated samples. Furthermore, the hydrolysis rate gradually increased with increasing dopant concentration. The PCL crosslinking and degradation is adjustable by the type of dopant, concentration of dopant and intensity of light during irradiation of PCL. In contrast, a photochemical pretreatment had no observable effect on the hydrolysis of PLA under the investigated conditions.  相似文献   

16.
Management of moisture penetration and hydrolytic degradation of polylactide (PLA) is extremely important during the manufacturing, shipping, storage, and end-use of PLA products. Moisture transport, crystallization, and degradation, in PLA have been measured through a variety of experimental techniques including size-exclusion chromatography, differential scanning calorimetry, and X-ray diffraction. Quartz crystal microbalance and dynamic vapor sorption experiments have also been used to measure moisture sorption isotherms in PLA films with varying crystallinity. A surprising result is that, within the accuracy of the experiments, crystalline and amorphous PLA films exhibit identical sorption isotherms.  相似文献   

17.
Biodegradation of poly(lactic acid) and its nanocomposites   总被引:2,自引:0,他引:2  
PLA nanocomposites based on organically modified montmorillonites at 5% w/w loading were prepared by melt blending using an internal mixer and then degraded in a commercial compost. The addition of nanoclays was found to increase the PLA degradation rate, especially for the highest dispersed clay in the polymer matrix. Biodegradation by microorganisms isolated from the compost showed the bacterium Bacillus licheniformis as one of the responsible for PLA biodegradation in compost. It was also found that clays can influence the polymer bacterial degradation depending on their chemical structure and affinity of the bacterium towards the clay.  相似文献   

18.
Abstract

In an attempt to gain a degree of control over the mechanical and degradation properties of poly(lactic acid) [PLA], large-scale efforts are underway to alter the phase morphology of PLA through chemical and physical modification. Consistent with this theme, our work aims to adjust the molecular architecture of highly amorphous PLA with an increasing concentration of hydroxy-terminated oligomeric poly(hexamethylene succinate) [PHS]. Gel-permeation chromatography (GPC) verifies the enhanced presence of PHS in the blends with a concomitant reduction in number-average molecular weight as the weight fraction of PHS is raised from 0.10 to 0.40. Differential scanning calorimetry (DSC) indicates amorphous phase compatibility between PHS and PLA at weight compositions of 10/90 and 20/80. However, as the amount of PHS approaches 30 and 40 wt%, the PHS exhibits the ability to crystallize independently from the induced PLA crystalline phase. Dynamic mechanical thermal analysis (DMTA) illustrates variable behavior of the materials under tension as a consequence of structural alterations generated by the oligoester. Finally, preliminary results suggest that these alterations may suppress the hydrolytic degradation of PLA.  相似文献   

19.
Polycarbodiimide (CDI) was used to improve the thermal stability of poly(l-lactic acid) (PLA) during processing. The properties of PLA containing various amounts of CDI were characterized by GPC, DSC, rheology, and tensile tests. The results showed that an addition of CDI in an amount of 0.1-0.7 wt% with respect to PLA led to stabilization of PLA at even 210 °C for up to 30 min, as evidenced by much smaller changes in molecular weight, melt viscosity, and tensile strength and elongation compared to the blank PLA samples. In order to examine the possible stabilization mechanism, CDI was reacted with water, acetic acid, l-lactic acid, ethanol and low molecular weight PLA. The molecular structures of the reaction products were measured with FTIR. The results showed that CDI could react with the residual or newly formed moisture and lactic acid, or carboxyl and hydroxyl end groups in the PLA samples, and thus hamper the thermal degradation and hydrolysis of PLA.  相似文献   

20.
Poly(lactic acid) (PLA) composites consisting of PLA, rice starch (RS) (0–50 wt%) and epoxidised natural rubber (ENR50) were compounded by a twin-screw extruder and compression moulded into dumbbell specimens. Tensile tests were performed to characterize the mechanical properties of the PLA/RS composites. Morphological studies were done on the tensile fractured surface of the specimens by using scanning electron microscopy (SEM). Twenty weight percent of RS achieved a good balance of strength and stiffness. Beyond 20 wt% loading of RS, the tensile strength and elongation at break of PLA decreased drastically. This may be attributed to the agglomeration of RS, which could then act as stress concentrator. The incorporation of ENR50 increased the tensile strength and elongation at break of the PLA/RS composites remarkably, owing to the elastomeric behaviour and compatibilisation effects of ENR50. Interestingly, the morphology of PLA/RS composites transformed to a more ductile one with the addition of ENR. The kinetics of water absorption of the PLA/RS composites conforms to Fick's law. The Mm and D values are dependent on the RS and ENR concentrations. The tensile properties of the PLA/RS composites deteriorated after water absorption. The retention-ability and recoverability of the PLA/RS composites are relatively low, attributed to the hydrolysis of PLA, degradation of the PLA–RS interface and leaching of the RS particles. In addition, the tensile properties of PLA/RS composites decreased drastically upon exposure to enzymatic degradation. Extensive pinhole and surface erosion on the PLA/RS composites indicate high degree of hydrolysis. Whilst the addition of ENR leads to some improvements in tensile properties, nevertheless, it enhanced the biodegradability of the PLA/RS composites when exposed to water and -amylase enzymatic treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号