首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
High speed patterning of a 30 nm thick Aluminium thin film on a flexible Polyethylene Terephthalate substrate was demonstrated with the aid of Computer Generated Holograms (CGH׳s) applied to a phase only Spatial Light Modulator. Low fluence picosecond laser pulses minimise thermal damage to the sensitive substrate and thus clean, single and multi-beam, front side thin film removal is achieved with good edge quality. Interestingly, rear side ablation shows significant Al film delamination. Measured front and rear side ablation thresholds were Fth=0.20±0.01 J cm−2 and Fth=0.15±0.01 J cm−2 respectively. With laser repetition rate of 200 kHz and 8 diffractive spots, a film removal rate of R>0.5 cm2 s−1 was demonstrated during patterning with a fixed CGH and 5 W average laser power. The effective laser repetition rate was feff~1.3 MHz. The application of 30 stored CGH׳s switching up to 10 Hz was also synchronised with motion control, allowing dynamic large area multi-beam patterning which however, slows micro-fabrication.  相似文献   

2.
Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×1014 W/cm2. The depths of the linear lesions increased linearly with both pulse energy (37.5–150 μJ) and exposure time (0.1–0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.  相似文献   

3.
Fabrication of high-resolution 3D structures with laser radiation on the surface of brittle materials has always been a challenging task. Even with femtosecond laser machining, micro-cracks and edge chipping occur. In order to evaluate processing modes optimal both in quality and productivity, we investigated high-speed (50 kHz) femtosecond laser processing of BK7 glass with the use of design of experiments and regression analysis. An automated inspection technique was developed to extract quality characteristics of test-objects. A regression model was obtained appropriate to fabricate microchannels with a predefined depth in the range of 1–30 µm with average accuracy of 5%. It was found that high quality machining modes are in the range of 0.91–2.27 µJ energy pulses, overlap of 53–62%, three and more number of passes. A material removal rate higher than 0.3 mm3/min was reached and microfluidic structures were formed based on data obtained.  相似文献   

4.
Femtosecond X-ray science is a new frontier in ultrafast research in which time-resolved measurement techniques are applied with X-ray pulses to investigate structural dynamics at the atomic scale on the fundamental time scale of an atomic vibrational period (∼100 fs). This new research area depends critically on the development of suitable femtosecond X-ray sources with the appropriate flux (ph/(s·0.1% BW)), brightness (ph/(s·mm2·mrad2·0.1% BW)), and tunability for demanding optical/X-ray pump probe experiments. In this paper we review recently demonstrated techniques for generating femtosecond X-rays via interaction between femtosecond laser pulses and relativistic electron beams. We give an overview of a novel femtosecond X-ray source that is proposed based on a linear accelerator combined with X-ray pulse compression.  相似文献   

5.
Time-resolved dynamics of plasma formation and bulk refractive-index modification in fluoride glass (ZBLAN) excited by a tightly focused femtosecond (130 fs) Ti:sapphire laser (λp=790 nm) was observed in situ. The femtosecond time-resolved pump–probe measurement with perpendicularly linear polarized beams was used to study the dynamics of both plasma formation and induced permanent structural transformation with refractive-index change. In the refractive-index domain, the lifetime of induced plasma formation is ~35 ps and structural transition time for forming the refractive-index change is ~80 ps. In the optical damage domain, however, the lifetime of induced plasma formation is ~40 ps and structural transition time for forming the optical damage is ~140 ps. We found that the process of refractive-index bulk modification is significantly different from that of optical cracks. From the diffraction efficiency of Kogelnik's coupled mode theory, the maximum value of refractive-index change (Δn) was estimated to be 1.3×10?2. By the scanning of fluoride glass on the optical X–Y–Z stages, the fabrication of internal grating with refractive-index modification was demonstrated in fluoride glass using tightly focused femtosecond laser.  相似文献   

6.
We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying xy axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.  相似文献   

7.
We report a sensitive photodetector, based on a manganite junction La2/3Ca1/3MnO3/Si, for femtosecond (fs) pulse laser energy per pulse and average power measurements. The La2/3Ca1/3MnO3/Si photodetector exhibits D? (normalized detectivity) greater than 5.229×109 cm Hz1/2 W?1. The open-circuit photovoltage and short-circuit photocurrent responsivities reach ~268 V/mJ and ~275 A/mJ for single pulse irradiation, respectively, and the open-circuit photovoltage responsivity reaches ~1.7 V/W for average power illumination. The experimental results make the manganite junction a promising fs laser measurement detector and reference standard for calibrating fs lasers.  相似文献   

8.
Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.  相似文献   

9.
Using the semiclassical coherent radiation—semiconductor interaction model, optical nutation has been analysed in aGaAs / AlxGa1  xAs quantum well structure (QWS) assumed to be immersed in a moderately strong magnetic field and irradiated by a not-too-strong near band gap resonant femtosecond pulsed Ti–sapphire laser. The finite potential well depth of the QWS and the Wannier–Mott excitonic structure of the crystal absorption edge is taken into account. The excitation intensity is assumed to be below the Mott transition where the various many-body effects have been neglected with adequate reasoning. Numerical analysis made for a GaAs quantum well of thickness    100 Åand the confining layers ofAlxGa1  xAs withx =  0.3 at intensity I   5  ×  106Wcm  2reveals that the real and imaginary parts of the transient complex-induced polarization are enhanced with an increase in the magnetic field and their ringing behaviour confirms the occurrence of optical nutation in the QWS.  相似文献   

10.
Laser cutting characteristics including power level and cutting gas pressure are investigated in order to obtain an optimum kerf width. The kerf width is investigated for a laser power range of 50–170 W and a gas pressure of 1–6 bar for steel and mild steel materials. Variation of sample thickness, material type, gas pressure and laser power on the average cut width and slot quality are investigated. Optimum conditions for the steel and mild steel materials with a thickness range of 1–2 mm are obtained. The optimum condition for the steel cutting results in a minimum average kerf width of 0.2 mm at a laser power of 67 W, cutting rate of 7.1 mm/s and an oxygen pressure of 4 bar. A similar investigation for the mild steel cutting results in a minimum average kerf width of 0.3 mm at the same laser power of 67 W, cutting rate of 9.5 mm/s, and an oxygen pressure of 1 bar. The experimental average kerf is about 0.3 mm, which is approximately equal to the estimated focused beam diameter of 0.27 mm for our focusing lens (f=4 cm and 100 W power). This beam size leads to a laser intensity of about 1.74×109 W/m2 at the workpiece surface. The estimated cutting rate from theoretical calculation is about 8.07 mm/s (1.0 mm thickness and 100 W power), which agrees with the experimental results that is 7.1 mm/s for 1.0 mm thickness of mild steel at the laser power of 88 W.  相似文献   

11.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

12.
Single-domain nanoscale magnetic iron particles have been embedded uniformly in an amorphous matrix of alumina using a pulsed laser deposition technique. Structural characterization by transmission electron microscopy (TEM) reveals the presence of a crystalline iron and an amorphous alumina phase. Fine particle magnetism have been investigated by carrying out field and temperature dependence of magnetization measurements using superconducting quantum interference device magnetometer. The particle size of Fe in Al2O3 matrices prepared by changing the deposition time of Fe, have been found to be 9, 7 and 5 nm from TEM studies. At 10 K, the coercivities of these samples are found be 450, 350 and 150 Oe, respectively. At 300 K, the coercivity of Fe–Al2O3 sample decreases from 100 to 50 Oe as the particle size decreases from 9 to 7 nm and finally the sample turns superparamagnetic when the Fe particle size becomes around 5 nm. Based on the calculated value of blocking temperature, TB, (481 K), magnetic anisotropy K (4.8×105 erg/cm3) for Fe, and the Boltzmann constant kB (1.38×10−16 erg/K) from TB=KV/25kB, the mean radius of Fe particles is found to be 9.3 nm. in one of the samples. This is in good agreement with the particle size measured using TEM studies.  相似文献   

13.
Using three-dimensional classical ensembles, we have investigated the enhancement of double ionization of perpendicularly aligned H2 molecules by a 800 nm laser pulse with intensity ranging from 1 × 1014 W/cm2 to 6 × 1014 W/cm2. The simulated results show that double ionization probability of H2 strongly depends on R and reaches a maximum at an intensity independent critical distance RC  5 a.u. Furthermore, the enhancement of double ionization is more pronounced in the cases of weaker or stronger fields. These results, a well indication of the influence of molecular structures and laser–molecule interactions on double ionization of diatomic molecules, are analyzed in detail and qualitatively explained based on the field-induced barrier suppression model and back analysis.  相似文献   

14.
Porous lead zirconate titanate (PbZr0.3Ti0.7O3, PZT30/70) thick films and detectors for pyroelectric applications have been fabricated on alumina substrates by screen-printing technology. Low temperature sintering of PZT thick films have been achieved at 850 °C by using Li2CO3 and Bi2O3 sintering aids. The microstructure of PZT thick film has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were measured using HP 4284 at 1 kHz under 25 °C. The permittivity and loss tangent of the thick films were 94 and 0.017, respectively. Curie temperature of PZT thick film was 425 °C as revealed by dielectric constant temperature measurement. The pyroelectric coefficient was determined to be 0.9 × 10−8 Ccm−2 K−1 by dynamic current measurement. Infrared detector sensitive element of dual capacitance was fabricated by laser directly write technology. Detectivity of the detectors were measured using mechanically chopped blackbody radiation. Detectivity ranging from 1.23 × 108 to 1.75 × 108 (cm Hz1/2 W−1) was derived at frequency range from 175.5 Hz to 1367 Hz, and D*’s −3 dB cut-off frequency bandwidth was 1.2 kHz. The results indicate that the infrared detectors based on porous thick films have great potential applications in fast and wide-band frequency response conditions.  相似文献   

15.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

16.
《Solid State Ionics》2006,177(19-25):1597-1600
Upon reduction, originally fully transparent and insulating ytterbium alumina garnet single crystals, Yb3Al5O12, become deeply colored and electrically conducting with a conductivity of the order of 10 3 Ω 1 cm 1 in the temperature range of 550 °C to 1000 °C. The redox kinetics of the material is studied by means of conductivity relaxation experiments performed at oxidising and reducing conditions. Good agreement is obtained with an optical study into the redox kinetics of Yb3Al5O12.  相似文献   

17.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

18.
Reaction rate coefficients for the major high-temperature methyl formate (MF, CH3OCHO) decomposition pathways, MF  CH3OH + CO (1), MF  CH2O + CH2O (2), and MF  CH4 + CO2 (3), were directly measured in a shock tube using laser absorption of CO (4.6 μm), CH2O (306 nm) and CH4 (3.4 μm). Experimental conditions ranged from 1202 to 1607 K and 1.36 to 1.72 atm, with mixtures varying in initial fuel concentration from 0.1% to 3% MF diluted in argon. The decomposition rate coefficients were determined by monitoring the formation rate of each target species immediately behind the reflected shock waves and modeling the species time-histories with a detailed kinetic mechanism [12]. The three measured rate coefficients can be well-described using two-parameter Arrhenius expressions over the temperature range in the present study: k1 = 1.1 × 1013 exp(?29556/T, K) s?1, k2 = 2.6 × 1012 exp(?32052/T, K) s?1, and k3 = 4.4 × 1011 exp(?29 078/T, K) s?1, all thought to be near their high-pressure limits. Uncertainties in the k1, k2 and k3 measurements were estimated to be ±25%, ±35%, and ±40%, respectively. We believe that these are the first direct high-temperature rate measurements for MF decomposition and all are in excellent agreement with the Dooley et al. [12] mechanism. In addition, by also monitoring methanol (CH3OH) and MF concentration histories using a tunable CO2 gas laser operating at 9.67 and 9.23 μm, respectively, all the major oxygen-carrying molecules were quantitatively detected in the reaction system. An oxygen balance analysis during MF decomposition shows that the multi-wavelength laser absorption strategy used in this study was able to track more than 97% of the initial oxygen atoms in the fuel.  相似文献   

19.
The decomposition of dimethyl ether (CH3OCH3) has been investigated behind incident shock waves in a diaphragmless shock tube using laser schlieren densitometry, LS (T = 1500–2450 K, P = 57 ± 4, 125 ± 5 and 253 ± 12 Torr). The LS density gradient profiles were simulated and excellent agreement was found between the simulations and experimental profiles. Rate coefficients for CH3OCH3  CH3O + CH3 were obtained. They showed strong fall-off, and at the lower end of the experimental temperature range are close to the low pressure limit. First order rate coefficient expressions were determined over 1500 < T < 2450 K. k57Torr = (3.10 ± 1.0) × 1079T?19.03 exp(?54417/T) s?1, k125Torr = (1.12 ± 0.3) × 1083T?19.94 exp(?55554/T) s?1and k253Torr = (1.02 ± 0.3) × 1073T?17.09 exp(?51500/T) s?1. The effect of a roaming channel for decomposition of dimethyl ether was assessed and the best agreement was obtained with 1% dissociation of DME via the roaming path.  相似文献   

20.
Spectral-kinetics properties of photo-scintillation excited with single light pulses of a nitrogen laser (λ=337.1 nm, t1/2=5 ns, Q=1 mJ) have been studied in CsI:Eu crystals at temperature within 80–300 K. It is found that the exponential decay of 463 nm emission band has a time constant which grows from 0.85 μs at 78 K to 1.6 μs at 380 K. Such an anomalous temperature behavior of 463 nm emission decay kinetics is discussed in terms of the crystal thermal expansion. It has been proposed that 463 nm emission is caused by a cluster center consisting of three dipoles Eu2+vc? bounded with each other in a hexagon. Owing to the exchange resonance in the cluster, the energy passes from an excited dipole to a non-excited one and the distance between them gets longer due to thermal expansion of the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号