首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We report on the use of patterned superhydrophobic silicon nanowire surfaces for the efficient, selective transfer of biological molecules and nanoparticles. Superhydrophilic patterns are prepared on superhydrophobic silicon nanowire surfaces using standard optical lithography. The resulting water-repellent surface allows material transfer and physisorption to the superhydrophilic islands upon exposure to an aqueous solution containing peptides, proteins, or nanoparticles.  相似文献   

2.
We report here plasma-induced formation of Ag nanostructures for surface-enhanced Raman scattering (SERS) applications. An array of uniform Ag patterned structures of 150 nm diameter was first fabricated on a silicon substrate with imprint lithography; then the substrate was further treated with an oxygen plasma to fracture the patterned structures into clusters of smaller, interconnected, closely packed Ag nanoparticles (20-60 nm) and redeposited Ag nanodots ( approximately 10 nm) between the clusters. The substrate thus formed had a uniform ultrahigh SERS enhancement factor (1010) over the entire substrate for 4-mercaptophenol molecules. By comparison, Au patterned structures fabricated with the same method did not undergo such a morphological change after the plasma treatment and showed no enhancement of Raman scattering.  相似文献   

3.
By illumination with white light porous silicon surfaces can be functionalized with alkynes and alkenes (see scheme). The hydrosilylation reactions are very simple to perform and lead to stable, patterned surfaces. This methodology opens new opportunities in the technological applications of porous silicon in both integrated circuits and sensors.  相似文献   

4.
High-density Pd line arrays with 55 nm line-width were obtained using nanocontact-printed dendrimer monolayers. Elastomeric PDMS stamps for nanocontact printing were replicated from silicon master molds which were fabricated by UV nanoimprinting in combination with reactive ion etching. The fabrication method effectively controlled the aspect ratios of high-density lines for resolving the problems encountered in both replicating silicon masters to PDMS stamps and printing with the replicated PDMS stamps. Using the PDMS nanostamp with an optimized aspect ratio, a self-assembled monolayer of dendrimer was patterned on a Pd film via nanocontact printing, which was facilitated by the strong interaction between Pd and amine groups of the dendrimer. The patterned self-assembled monolayer was used as an etch-resist mask against the wet etchant of Pd, leaving behind a high-density Pd line array over large areas. The resulting functional Pd nanopattern is of practical significance in microelectronics and bio- or gas-sensing devices.  相似文献   

5.
We have used focused electron-beam cross-linking to create nanosized hydrogels and thus present a new method with which to bring the attractive biocompatibility associated with macroscopic hydrogels into the submicron length-scale regime. Using amine-terminated poly(ethylene glycol) thin films on silicon substrates, we generate nanohydrogels with lateral dimensions of order 200 nm which can swell by a factor of at least five, depending on the radiative dose. With the focused electron beam, high-density arrays of such nanohydrogels can be flexibly patterned onto silicon surfaces. Significantly, the amine groups remain functional after e-beam exposure, and we show that they can be used to covalently bind proteins and other molecules. We use bovine serum albumin to amplify the number of amine groups, and we further demonstrate that different proteins can be covalently bound to different hydrogel pads on the same substrate to create multifunctional surfaces useful in emerging bio/proteomic and sensor technologies.  相似文献   

6.
We investigated the structural changes occurring in proteins patterned via microcontact printing. This was done by molecular sizing using atomic force microscopy to observe the structure of printed individual metalloprotein molecules in the unlabeled and untreated states. We observed that the size of the printed proteins were more than 2-fold smaller than the native shape, which indicates that some deformations take place upon the contact-assisted adsorption on silanized silicon dioxide. This can be attributed to simultaneously occurring effects, and particularly to the sandwiching between surfaces of very different hydrophilic/hydrophobic properties during contact lithography.  相似文献   

7.
Hexagonally patterned lysozyme nanoarrays have been assembled on silicon wafers by combining nanosphere lithography and surface silane chemistry using vapor and solution deposition processes. The patterned protein regions extend over cm sized regions, and the size of each island is approximately 120 nm for the solution-prepared template and approximately 60 nm for the vapor-prepared template. Antibody test indicates that the patterned lysozyme maintains its bioactivity on the surface. This new approach offers a fast and reliable method to fabricate protein arrays over large areas with feature sizes comparable to scanning-probe based techniques.  相似文献   

8.
Linear arrangements of polypyrrole microcontainers   总被引:1,自引:0,他引:1  
Linear arranged polypyrrole microcontainers have been assembled into one or two lines on patterned silicon micro-electrodes with line widths of 50 and 200 microm, respectively.  相似文献   

9.
The wetting of lead on silicon wafers with regularly patterned holes, and covered by native silica, has been investigated at 610 K under ultrahigh vacuum conditions. The advancing and receding macroscopic contact angles have been measured by slowly compressing and stretching a liquid lead bridge between two identically patterned substrates. These angles are shown to depend on the distribution of the holes in the wafers and the continuity of the triple line.  相似文献   

10.
The electrochemical cathodic electrografting reaction, previously demonstrated on bulk silicon surfaces, can be patterned on the nanoscale utilizing conducting probe atomic force microscopy (CP-AFM). Alkyne electrografting is a particularly useful chemical technique since it leads to direct covalent attachment of conjugated alkynes to silicon. In addition, application of a forward bias during the reaction renders the surface less sensitive to oxidation and the resulting monolayers are very stable in air and basic aqueous solution. Alkyne monolayer lines can be drawn down to 40 nm resolution using a Pt-coated AFM tip, and the heights of the monolayers scale with the molecular length of the alkyne. The tip is biased (+) and the surface is biased (-) to drive the cathodic electrografting reaction under ambient conditions. The resistance of the monolayers to fluoride, as well as friction force microscopy, indicate that the alkynes are covalently bonded to the surface, not oxide-based, and hydrophobic. The reaction does not work with alkenes, and therefore hydrosilylation is not the primary mode of reaction. Wider lines (300 nm) can be produced using broadened Pt-coated AFM tips. This reaction could be important for the interfacing of conjugated molecules directly to silicon in a spatially controlled fashion.  相似文献   

11.
We demonstrate a novel approach for the production of patterned films of nanometer-sized Au/Ag bimetallic core/shell nanoparticles (NPs) on silicon wafers. In this approach, we first self-assembled monodisperse Au NPs, through specific Au...NH(2) interactions, onto a silicon substrate whose surface had been modified with a pattern of 3-aminopropyltrimethoxysilane (APTMS) groups to form a sandwich structure having the form Au NPs/APTMS/SiO(2). These Au NPs then served as seeds for growing the Au/Ag bimetallic core/shell NPs: we reduced silver ions to Ag metal on the surface of Au seeds under rapid microwave heating in the presence of sodium citrate. Energy-dispersive X-ray analysis confirmed that the Au/Ag bimetallic core/shell NPs grew selectively on the regions of the surface of the silicon wafer that had been patterned with the Au seeds. Scanning electron microscopy images revealed that we could synthesize well-scattered, high-density (>82%) thin films of Au/Ag bimetallic core/shell NPs through the use of this novel strategy. The patterned structures that can be formed are simple to produce, easily controllable, and highly reproducible; we believe that this approach will be useful for further studies of nanodevices and their properties.  相似文献   

12.
A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer‐by‐layer technique on a silicon oxide surface modified with a 3‐aminopropyltriethoxysilane (APTES) monolayer. The surface pKa value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer‐by‐layer assembly. Micropatterned polyelectrolyte films were obtained by deep‐UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm2 s?1 in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field.  相似文献   

13.
We study the guided self-assembly of symmetric/asymmetric diblock copolymer (BCP) films on heterogeneous substrates with chemically patterned surface by using a coarse-grained phase-separation model. During the procedure, the free energy employed for the BCP films was modeled by the Ginzburg-Landau free energy with nonlocal interaction, and the flat, chemically patterned surface was considered as a heterogeneous surface with short-range interaction with the BCP molecules. The resulting Cahn-Hilliard equation was solved by means of an efficient semi-implicit Fourier-spectral algorithm. Effects of pattern scale, surface chemical potential, and BCP asymmetry on the self-assembly process were explored in detail and compared with those without chemically patterned substrate surfaces. It was found that the morphology of both symmetric and asymmetric BCP films is strongly influenced by the commensurability between the unconstrained natural period lambda* of the bulk BCP and the artificial pattern period. Simulation shows that patterned surface with period close to lambda* leads to highly ordered morphology after self-assembly for both symmetric and asymmetric BCP films, and it also dramatically accelerates the guided self-assembly process. The present simulation is in a very good agreement with the recent experimental observation in BCP nanolithography. Finally, the present study also expects an innovative nanomanufacturing method to produce highly ordered nanodots based on the guided self-assembly of asymmetric BCP films on chemically patterned substrates.  相似文献   

14.
Surface‐patterned 2‐hydroxyethyl methacrylate hydrogels were produced by using a method similar to the silicon‐rubber stamp fabrication for microcontact printing. Polymerization and network formation were carried out in contact with a micromachined silicon wafer. The polymeric patterns retained their shape during isotropic swelling/deswelling cycles. The use of microstructured hydrogels in tissue engineering can be envisaged.  相似文献   

15.
The orientational control of liquid crystal (LC) molecules is essential for high-quality liquid crystal displays, and the photo-induced surface relief grating (SRG) is a facile and effective non-contact process. Here, SRGs with different period and depth were prepared with a photocross-linkable organic monomer 4-propyldiphenylacetylenecarboxylic acid cinnamyl ester (PDACE), and the LC alignment induced by SRG was studied. It is found that both the surface topography and the chemical nature of the surface are responsible for the LC alignment, which is strongly dependent on the groove geometry of the gratings. Furthermore, the patterned LC cell was fabricated with the patterned SRG surface. These results demonstrate that the planar, perpendicular and patterned orientations of LC can be easily photo-controllably obtained with PDACE, which have important applications in optical devices.  相似文献   

16.
A technique for micrometer-scale patterning of multiple functional biological molecules on surfaces is demonstrated. The technique is referred to as single-feature inking and stamping (SFINKS). It combines elements of dip-pen nanolithography and microcontact printing. "Inked" atomic force microscopy probes are used to ink individual features of an elastomer stamp. From a single stamp, we printed three different probe ssDNA with <10 mum resolution and showed that they specifically hybridize the complementary DNA labeled with different fluorophores. As a further demonstration of SFINKS' versatility, we patterned a silane onto a silicon wafer consisting of four subpatterns separated by >100 mum and composed of 2 mum lines. We discuss why patterns such as these are impractical with available techniques. Furthermore, we comment on the prospects for multiple stamping after a single inking.  相似文献   

17.
In lab-on-a-chip applications, filtration is currently performed prior to sample loading or through pre-cast membranes adhered to the substrate. These membranes cannot be patterned to micrometer resolution, and their adhesion may be incompatible with the fabrication process or may introduce contaminants. We have developed an on-chip separation process using a biocompatible polymer that can be patterned and has controllable molecular rejection properties. We spun cast cellulose acetate (CA) membranes directly onto silicon wafers. Characterization of the molecular flux across the membrane showed that molecular weight and charge are major factors contributing to the membranes' rejection characteristics. Altering casting conditions such as polymer concentration in the casting solution and the quenching-bath composition and/or temperature allowed control of the molecular weight cut-off (MWCO). Three MWCOs; 300, 350, and 700 Da have been achieved for non-linear molecules. Molecular shape is also very important as much higher molecular weight single-stranded DNA was electrophoresed across the membranes while heme with a similar negative charge density was rejected. This was due to DNA's small molecular cross section. This is an important result because heme inhibits polymerase chain reactions (PCR) reducing the detection and characterization of DNA from blood samples.  相似文献   

18.
6.7 Gigatonnes of silicon are processed each year by marine organisms. Since it was known that silicon is an essential element for many biological systems, significant advances in the biochemistry of this element have been achieved from the classical viewpoint of silicon being a purely inorganic element. This article describes the proteins, genes, and molecular mechanisms of silicon metabolism in diatoms and sponges. These studies may help to reveal the role of silicon for optimal development and growth in many plants and animals as well as initiate the development of new technological methods for the shape-controlled production of new patterned silicone-based materials.  相似文献   

19.
We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.  相似文献   

20.
Microcontact chemistry has been applied to patterned glass and silicon substrates by successive reaction of unprotected and monoprotected heterobifunctional linkers with alkene-terminated self-assembled monolayers (SAMs) to produce bi-, tri-, and tetrafunctional surfaces. Photochemical microcontact printing of an azide thiol linker followed by immobilization of an acid thiol linker on an undecenyl-terminated SAM results in a well-defined, micropatterned surface with terminal azide, acid, and alkene groups. Biologically relevant molecules (biotin, carbohydrates) have been selectively attached to the surface by means of orthogonal ligation chemistry, and the resulting microarrays display selective binding to fluorescently labeled proteins. An orthogonally addressable, tetrafunctional surface (azide, acid, alkene, and amine) can be prepared by an additional printing step of a tert-butyloxycarbonyl (Boc)-protected alkyne amine linker on the azide structures by using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and subsequent removal of the protective group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号