首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The reactions of gas-phase Cu(+)((1)S) and Cu(+)((3)D) with CF(3)X and CH(3)X (X = Cl, Br, and I) have been examined experimentally using the drift cell technique at 3.5 Torr in He at room temperature. State-specific product channels and overall bimolecular rate constants for depletion of the two Cu(+) states were determined using electronic state chromatography. The results showed that Cu(+)((1)S) participates exclusively in association with all of these neutrals, whereas, depending on the neutral, Cu(+)((3)D) initiates up to three bimolecular processes, resulting in the formation of CuX(+), CuC(H/F)(3)(+), and C(H/F)(3)X(+). Possible structures for the singlet association products were explored using density functional methods. These calculations indicated that Cu(+) preferentially associates with the labile halogen (Cl, Br, I) with all neutrals except CF(3)Cl, for which a "backside" geometry occurs in which Cu(+)((1)S) is weakly bound to the -CF(3) end of the molecule. All products observed on the triplet reaction surface can be understood in terms of either known or calculated thermochemical requirements. Product distributions and overall reaction efficiencies for C-X bond activation (X = Br, I) through Cu(+)((3)D) suggest that the orientation of the neutral dipole has little or no effect in controlling access to specific product channels. Likewise, second-order rate constants for reactions with X = Br and I indicate efficient depletion of Cu(+)((3)D) and do not exhibit the dramatic variations in reaction efficiency previously observed with CH(3)Cl and CF(3)Cl. These results suggest that C-X bond activation proceeds through a bond-insertion mechanism as opposed to direct abstraction.  相似文献   

2.
A study of the reactions of a series of gas-phase cations (NH(4)(+), H(3)O(+), SF(3)(+), CF(3)(+), CF(+), SF(5)(+), SF(2)(+), SF(+), CF(2)(+), SF(4)(+), O(2)(+), Xe(+), N(2)O(+), CO(2)(+), Kr(+), CO(+), N(+), N(2)(+), Ar(+), F(+), and Ne(+)) with the three structural isomers of dichloroethene, i.e., 1,1-C(2)H(2)Cl(2), cis-1,2-C(2)H(2)Cl(2), and trans-1,2-C(2)H(2)Cl(2) is reported. The recombination energy (RE) of these ions spans the range of 4.7-21.6 eV. Reaction rate coefficients and product branching ratios have been measured at 298 K in a selected ion flow tube (SIFT). Collisional rate coefficients are calculated by modified average dipole orientation (MADO) theory and compared with experimental data. Thermochemistry and mass balance have been used to predict the most feasible neutral products. Threshold photoelectron-photoion coincidence spectra have also been obtained for the three isomers of C(2)H(2)Cl(2) with photon energies in the range of 10-23 eV. The fragment ion branching ratios have been compared with those of the flow tube study to determine the importance of long-range charge transfer. A strong influence of the isomeric structure of dichloroethene on the products of ion-molecule reactions has been observed for H(3)O(+), CF(3)(+), and CF(+). For 1,1-C(2)H(2)Cl(2) the reaction with H(3)O(+) proceeds at the collisional rate with the only ionic product being 1,1-C(2)H(2)Cl(2)H(+). However, the same reaction yields two more ionic products in the case of cis-1,2- and trans-1,2-C(2)H(2)Cl(2), but only proceeds with 14% and 18% efficiency, respectively. The CF(3)(+) reaction proceeds with 56-80% efficiency, the only ionic product for 1,1-C(2)H(2)Cl(2) being C(2)H(2)Cl(+) formed via Cl(-) abstraction, whereas the only ionic product for both 1,2-isomers is CHCl(2)(+) corresponding to a breaking of the C=C double bond. Less profound isomeric effects, but still resulting in different products for 1,1- and 1,2-C(2)H(2)Cl(2) isomers, have been found in the reactions of SF(+), CO(2)(+), CO(+), N(2)(+), and Ar(+). Although these five ions have REs above the ionization energy (IE) of any of the C(2)H(2)Cl(2) isomers, and hence the threshold for long-range charge transfer, the results suggest that the formation of a collision complex at short range between these ions and C(2)H(2)Cl(2) is responsible for the observed effects.  相似文献   

3.
Gas-phase [C, H(3), S](+) ions obtained by electron impact from (CH(3))(2)S at 14 eV undergo two distinct low-pressure ion-molecule reactions with the parent neutral: proton transfer and charge exchange. The kinetics of these reactions studied by Fourier transform ion cyclotron resonance (FT-ICR) techniques clearly suggests the [C, H(3), S](+) species to be a mixture of isomeric ions. While proton transfer is consistent with reagent ions displaying the CH(2)SH(+) connectivity, the observed charge exchange strongly argues for the presence of thiomethoxy cations, CH(3)S(+), predicted to be stable only in the triplet state. Charge exchange reactions are also observed in the reaction of these same [C, H(3), S](+) ions with benzene, toluene and phenetole. For these substrates, the CH(2)SH(+) ions can promote proton transfer and electrophilic methylene insertion in the aromatic ring with elimination of H(2)S. The results obtained for the different substrates suggest that the fraction of long-lived fraction of thiomethoxy cations obtained at 14 eV by electron ionization of dimethyl sulfide amounts to ~(22 -/+ 4)% of the [C, H(3), S](+) fragments.  相似文献   

4.
The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).  相似文献   

5.
Reactions of Au(+)((1)S) and Au(+)((3)D) with CH(3)F and CH(3)Cl have been carried out in a drift cell in He at a pressure of 3.5 Torr at both room temperature and reduced temperatures in order to explore the influence of the electronic state of the metal on reaction outcomes. State-specific product channels and overall two-body rate constants were identified using electronic state chromatography. These results indicate that Au(+)((1)S) reacts to yield an association product in addition to AuCH(2)(+) in parallel steps with both neutrals. Product distributions for association vs HX elimination were determined to be 79% association/21% HX elimination for X = F and 50% association/50% HX elimination when X = Cl. Reaction of Au(+)((3)D) with CH(3)F also results in HF elimination, which in this case is thought to produce (3)AuCH(2)(+). With CH(3)Cl, Au(+)((3)D) reacts to form AuCH(3)(+) and CH(3)Cl(+) in parallel steps. An additional product channel initiated by Au(+)((3)D) is also observed with both methyl halides, which yields CH(2)X(+) as a higher-order product. Kinetic measurements indicate that the reaction efficiency for both Au(+) states is significantly greater with CH(3)Cl than with CH(3)F. The observed two-body rate constant for depletion of Au(+)((1)S) by CH(3)F represents less than 5% of the limiting rate constant predicted by the average dipole orientation model (ADO) at room temperature and 226 K, whereas CH(3)Cl reacts with Au(+)((1)S) at the ADO limit at both room temperature and 218 K. Rate constants for depletion of Au(+)((3)D) by CH(3)F and CH(3)Cl were measured at 226 and 218 K respectively, and indicate that Au(+)((3)D) is consumed at approximately 2% of the ADO limit by CH(3)F and 69% of the ADO limit by CH(3)Cl. Product formation and overall efficiency for all four reactions are consistent with previous experimental results and available theoretical models.  相似文献   

6.
In this work, the contribution of the pairwise H(2) addition to the overall reaction mechanism was studied under the systematic variation of both the Pd particle size and the properties of the catalyst support using the hydrogenation of propene and propyne over supported Pd catalysts as representative examples. For Pd supported on alumina, silica and zirconia, only propene formed upon hydrogenation of propyne with para-H(2) exhibits hyperpolarization. In contrast, propane formed in hydrogenation of propyne or propene is not hyperpolarized. This demonstrates the existence of different routes of H(2) addition to double and triple bonds on supported Pd catalysts. The unique ability of Pd/TiO(2) catalysts to add H(2) in a pairwise manner not only to the triple but also to the double bond is demonstrated. This finding indicates that the Pd-support interaction is of primary importance in determining not only the magnitude of the hyperpolarization of the NMR lines of the reaction products but even the involvement of the pairwise H(2) addition and hence the mechanism of heterogeneous hydrogenation. The comparative analysis of the selectivities toward pairwise H(2) addition suggested the existence of different surface active sites responsible for all three reaction routes: the direct total hydrogenation of propyne into propane, its selective hydrogenation into propene, and hydrogenation of propene into propane. A reaction scheme which accounts for the formation of the observed hyperpolarized and non-polarized reaction products in propyne and propene hydrogenation with para-H(2) over supported Pd catalysts is suggested. For the first time, application of the PHIP technique allowed us to demonstrate that hydrogenation of propene does not take place in the presence of propyne on supported Pd catalysts.  相似文献   

7.
The reactions of Sc(+)((3)D) with methane, ethane, and propane in the gas phase were studied theoretically by density functional theory. The potential energy surfaces corresponding to [Sc, C(n), H(2n+2)](+) (n=1-3) were examined in detail at the B3LYP/6-311++G(3df, 3pd)//B3LYP/6-311+G(d,p) level of theory. The performance of this theoretical method was calibrated with respect to the available thermochemical data. Calculations indicated that the reactions of Sc(+) with alkanes are multichannel processes which involve two general mechanisms: an addition-elimination mechanism, which is in good agreement with the general mechanism proposed from earlier experiments, and a concerted mechanism, which is presented for the first time in this work. The addition-elimination reactions are favorable at low energy, and the concerted reactions could be alternative pathways at high energy. In most cases, the energetic bottleneck in the addition-elimination mechanism is the initial C--C or C--H activation. The loss of CH(4) and/or C(2)H(6) from Sc(+)+C(n)H(2n+2) (n=2, 3) can proceed along both the initial C--C activation branch and the Cbond;H activation branch. The loss of H(2) from Sc(+)+C(n)H(2n+2) (n=2, 3) can proceed not only by 1,2-H(2) and/or 1,3-H(2) elimination, but also by 1,1-H(2) elimination. The reactivity of Sc(+) with alkanes is compared with those reported earlier for the reactions of the late first-row transition-metal ions with alkanes.  相似文献   

8.
The gas-phase ion chemistry of propyne-phosphine and silane-propyne-phosphine mixtures was studied by ion trap mass spectrometry. For the binary mixture, the effect of different partial pressures of the reagents on the yield of C and P-containing ions was evaluated. Reaction sequences and rate constants were determined and reaction efficiencies were calculated from comparison of experimental and collisional rate constants. In the ternary silane-propyne-phosphine systems, the reaction pathways leading to formation of Si(m)C(n)P(p)H(q) (+) ions were determined and the rate constants of the most important steps were measured. For some ion species, selected by double isolation procedures (MS/MS), the low ion abundances prevented determination of the reaction rate constants. Si, C and P-containing ions are mainly produced in reactions of Si(m)P(p)H(q) (+) ions with propyne, while the reactivity of the Si(m)C(n)H(q) (+) ions towards PH(3) and of the C(n)P(p)H(q) (+) ions towards SiH(4) is very low. The formation of hydrogenated Si--C--P ions is interesting for their possible role as precursors of amorphous silicon carbides doped with phosphorus, obtained in a single step, by deposition from properly activated silane-propyne-phosphine mixtures.  相似文献   

9.
Reactions of CH(3)F have been surveyed systematically at room temperature with 46 different atomic cations using an inductively coupled plasma/selected-ion flow tube tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of fourth-period atomic ions from K(+) to Se(+), of fifth-period atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of sixth-period atomic ions from Cs(+) to Bi(+). Primary reaction channels were observed corresponding to F atom transfer, CH(3)F addition, HF elimination, and H(2) elimination. The early-transition-metal cations exhibit a much more active chemistry than the late-transition-metal cations, and there are periodic features in the chemical activity and reaction efficiency that maximize with Ti(+), As(+), Y(+), Hf(+), and Pt(+). F atom transfer appears to be thermodynamically controlled, although a periodic variation in efficiency is observed within the early-transition-metal cations which maximizes with Ti(+), Y(+), and Hf(+). Addition of CH(3)F was observed exclusively (>99%) with the late-fourth-period cations from Mn(+) to Ga(+), the fifth-period cations from Ru(+) to Te(+), and the sixth-period cations from Hg(+) to Bi(+) as well as Re(+). Periodic trends are observed in the effective bimolecular rate coefficient for CH(3)F addition, and these are consistent with expected trends in the electrostatic binding energies of the adduct ions and measured trends in the standard free energy of addition. HF elimination is the major reaction channel with As(+), while dehydrogenation dominates the reactions of W(+), Os(+), Ir(+), and Pt(+). Sequential F atom transfer is observed with the early-transition-metal cations, with the number of F atoms transferred increasing across the periodic table from two to four, maximizing at four for the group 5 cations Nb(+)(d(4)) and Ta(+)(d(3)s(1)), and stopping at two with V(+)(d(4)). Sequential CH(3)F addition was observed with many atomic cations and all of the metal mono- and multifluoride cations that were formed.  相似文献   

10.
Multiple-ion coincidence momentum imaging experiments were carried out for K-shell (1s) excited Ar clusters containing about 130 atoms and Kr clusters containing about 30, 90, and 160 atoms. The time-of-flight spectra reveal that the major products of the Coulomb explosion are singly charged ions. With increasing the number of charges generated in clusters, the momentum of monomer ions such as Ar(+) and Kr(+) increases, while that of cluster ions such as Ar(3) (+), Kr(2) (+), and Kr(3) (+) decreases. This observation indicates the site-specific decay process that the heavier ions appear in the central part of clusters. We have also investigated the momentum distribution in various fragmentation channels and the branching ratio of each channel at the Coulomb explosion. When the number N(coin) of coincidently detected ions is four, for example, the most frequent channel from Kr clusters containing 30 atoms is to emit simply four Kr(+) ions, but Kr(2) (+) ions participate in the fragmentation from the larger Kr clusters. The fragmentation channel in which two Ar(2) (+) ions are emitted becomes dominant with increasing N(coin), and the average momentum of Ar(2) (+) ion in this channel is larger than that in the channels where only single Ar(2) (+) is emitted.  相似文献   

11.
The gas-phase ion chemistry of silane-allene-ammonia, germane-allene (or propyne)-ammonia (or phosphine) systems was studied by ion trap mass spectrometry. Reaction sequences were determined and rate constants were measured for the main processes observed. The mixture containing silane displays higher reactivity with respect to that with germane. Comparison with analogous systems provides useful information about the reactivity of different hydrocarbon molecules and the different affinities of silicon and germanium towards nitrogen and phosphorus. The most interesting product ions observed are those containing Si (or Ge), C and N (or P) elements together, as these ion species may be considered precursors of doped amorphous carbides, which are widely used in semiconductor devices.  相似文献   

12.
We have carried out a study of the reactions of H(3)O(+), NO(+) and O(2) (+), the commonly used precursor ions for selected ion flow tube mass spectrometry (SIFT-MS), with three anaesthetic gases, halothane, isoflurane and sevoflurane. The motivation for this study was to provide the necessary kinetic data that would allow the quantification of these anaesthetic gases in operating theatre air and in the breath of theatre staff and post-operative patients. A clear negative result from these experiments is that NO(+), although undergoing the simplest chemistry, is unsuitable for this SIFT-MS application. However, although the ion chemistry of H(3)O(+) and O(2) (+) with these compounds is very complex, there being several product ions in each reaction, many of which react rapidly with water molecules, monitor ions have been identified for all three anaesthetic gases when using H(3)O(+) and O(2) (+) as precursor ions. The detailed ion chemistry is discussed and the specific monitor ions are indicated. Hence, the feasibility of on-line breath monitoring is demonstrated by simple examples. These studies have opened the way to measurements in the clinical environment.  相似文献   

13.
The course of the reaction of electronically and vibronically excited metastable O(2) (+)((4)Pi(u), nu') ions with O(2), known to produce O(3) (+), was examined by the joint application of computational and mass spectrometric methods. The results show that the reaction does not proceed by a direct mechanism and that it involves instead the intermediacy of the [O(2) (+)((4)Pi(u)) x O(2)] and [O(3) (+)((4)A(2)) x O] complexes, both theoretically characterized, and the latter one positively identified by structurally diagnostic mass spectrometric techniques. The reaction is a potential source of stratospheric ozone, in that O(3) (+) ions are known to undergo efficient charge exchange with oxygen to yield neutral O(3).  相似文献   

14.
Adsorption of hydrogen ions from aqueous NaCl solutions at the Pyrex glass-water interface was investigated by acid-base titration (glass electrode) at 25 degrees C and at the ionic strengths 0.010, 0.030, 0.10, 1.0, and 3.0 mol dm(-3). The pH values ranged from 2 to 7. The Pyrex samples had a specific surface area of 19.2x10(3) m(2)kg(-1) and a porous structure (pores 2.4 nm thick, 280 nm long). The reactions were found to be extremely slow but showed good reversibility. The potentiometric data, due to the small effect of ionic strength on the equilibria, were fitted with a simple nonelectrostatic model based on strong specific interactions of medium ions with deprotonated silanol, >SiO(-), and boranol, >BO(-), as well as with protonated sites. The acid-base properties are described by the reactions and equilibrium constants at the infinite dilution reference state: >SiONa + H(+) <==> >SiOHNa(+), logbeta110Si=3.1+/-0.2; >SiONa + 2H(+) + Cl(-) <==> >SiOH(2)Cl + Na(+), logbeta201Si=6.75+/-0.15; >SiONa + H(+) <==> >SiOH + Na(+), logbeta100Si=1.8+/-0.2, >BONa + H(+) <==>BOH + Na(+), logbeta100B=6.4+/-0.2; >BONa + H(+) <==> >BOHNa(+), logbeta110B=6.6+/-0.2; >BONa + 2H(+) <==> >BOH(+)(2) + Na(+), logbeta200B=11.56+/-0.15.  相似文献   

15.
The multireference spin-orbit configuration interaction method is employed to calculate potential energy curves for the ground and low-lying excited states of the KrH(+) cation. For the first time, the spin-orbit interaction is taken into account and electric dipole moments are computed for transitions to the states responsible for the first absorption continuum (A band) of KrH(+). On this basis, the partial and total absorption spectra in this energy range are obtained. It is shown that the A-band absorption is dominated by the parallel A (1)Sigma(+)<--X (1)Sigma(+) transition. In the low-energy part of the band (<83x10(3) cm(-1)) the absorption is mainly caused by the spin-forbidden b (3)Pi(0(+) )<--X (1)Sigma(+) excitation, while perpendicular transitions to the B (1)Pi and b (3)Pi(1) states are significantly weaker. The branching ratio Gamma for the photodissociation products is calculated and it is shown to increase smoothly from 0 in the red tail of the band to 1 at E>or=90x10(3) cm(-1). The latter value corresponds to the exclusive formation of the spin-excited Kr(+)((2)P(12)) ions, which may be used to obtain laser generation on the Kr(+)((2)P(12)-(2)P(32)) transition.  相似文献   

16.
The kinetics for the gas-phase reaction of phenyl radical with propyne has been measured by cavity ring-down spectrometry (CRDS), and the mechanism and initial product branching have been elucidated with the help of quantum chemical calculations. Absolute rate constants measured by the CRDS technique can be expressed by the following Arrhenius equation: (k/cm(3) mol(-1) s(-1)): k(propyne)(T=301-428 K)=(3.68+/-0.92) x 10(11)exp[-(1685+/-80)/T]. The experiment is unable to distinguish between the possible reactive channels, but theory indicates that phenyl radicals preferably add to the unsaturated terminal carbon atom in propyne under our experimental conditions. Theoretical kinetic calculations, employing high-level G2M(RCC, RMP2) and G3 energetic and IRCMax(RCCSD(T)//B3LYP-DFT) molecular parameters, reproduce the total experimental rate constants within a factor of three. Calculated total and branching rate constants are provided for high-T kinetic modeling. Addition reactions of phenyl to C3H4 are estimated to be less important molecular-growth pathways in high-T conditions (T>1000 K) in comparison to the C6H5 + C2H2 reaction.  相似文献   

17.
A model of core mechanism of hydrocarbon pyrolysis with good predictive ability is crucial to the development of active cooling technology for advanced aeroengines. In this work, a detailed core kinetic model of pyrolysis of C1–C4 hydrocarbon fuels is developed through the combination of a series of potential energy surfaces and validated against a series of experimental results. The kinetic model contains 103 species and 1290 reactions, and most of the kinetic and thermochemical parameters are compiled from recent highly accurate quantum chemical calculations without modification. The pressure-dependent rate constants are considered for the dissociation/association reactions, isomerization reactions, and chemically activated reactions. Simulation results for various alkanes (methane, ethane, propane, n-butane, isobutane), alkenes (ethylene, propene, 1-butene, 2-butene, isobutene, allene, 1,3-butadiene), and alkynes (acetylene, propyne, vinylacetylene) indicate that the major product distributions at various temperatures (800-2300 K) and pressures (0.8-10 atm) can be predicted well by the developed core kinetic model. Thus, the developed pyrolysis mechanism for C1–C4 hydrocarbons can be used as a cornerstone to develop the pyrolysis mechanisms of larger hydrocarbon fuels and thus support the development of thermal management in advanced aeroengines.  相似文献   

18.
Threshold collision-induced dissociation of M(+)(adenine) with xenon is studied using guided ion beam mass spectrometry. M(+) includes all 10 first-row transition metal ions: Sc(+), Ti(+), V(+), Cr(+), Mn(+), Fe(+), Co(+), Ni(+), Cu(+), and Zn(+). For the systems involving the late metal ions, Cr(+) through Cu(+), the primary product corresponds to endothermic loss of the intact adenine molecule, whereas for Zn(+), this process occurs but to form Zn + adenine(+). For the complexes to the early metal ions, Sc(+), Ti(+), and V(+), intact ligand loss competes with endothermic elimination of purine and of HCN to form MNH(+) and M(+)(C(4)H(4)N(4)), respectively, as the primary ionic products. For Sc(+), loss of ammonia is also a prominent process at low energies. Several minor channels corresponding to formation of M(+)(C(x)H(x)N(x)), x = 1-3, are also observed for these three systems at elevated energies. The energy-dependent collision-induced dissociation cross sections for M(+)(adenine), where M(+) = V(+) through Zn(+), are modeled to yield thresholds that are directly related to 0 and 298 K bond dissociation energies for M(+)-adenine after accounting for the effects of multiple ion-molecule collisions, kinetic and internal energy distributions of the reactants, and dissociation lifetimes. The measured bond energies are compared to those previously studied for simple nitrogen donor ligands, NH(3) and pyrimidine, and to results for alkali metal cations bound to adenine. Trends in these results and theoretical calculations on Cu(+)(adenine) suggest distinct differences in the binding site propensities of adenine to the alkali vs transition metal ions, a consequence of s-dsigma hybridization on the latter.  相似文献   

19.
Germane-propane and germane-propene gaseous mixtures were studied by ion trap mass spectrometry. Variations of ion abundances observed under different partial pressure ratios and mechanisms of ion-molecule reactions elucidated by multiple isolation steps are reported. In addition, the rate constants for the main reactions were experimentally determined and compared with the collisional rate constants to obtain the reaction efficiencies. The yield of ions containing both Ge and C atoms is higher in the germane-propene than in the germane-propane system. In the former mixture, chain propagation takes place starting from germane ions reacting with propene and proceeds with the formation of clusters such as Ge(2)C(4)H(n) (+) and Ge(3)CH(n) (+).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号