首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic and thermal properties of AB-stacked bilayer graphene nanoribbons subject to the influences of a transverse electric field are investigated theoretically, including their transport properties. The dispersion relations are found to exhibit a rich dependence on the interlayer interactions, the field strength, and the geometry of the layers. The interlayer coupling will modify the subband curvature, create additional band-edge states, change the subband spacing or energy gap, and separate the partial flat bands. The bandstructures will be symmetric or asymmetric about the Fermi energy for monolayer or bilayer nanoribbons, respectively. The inclusion of a transverse electric field will further alter the bandstructures and lift the degeneracy of the partial flat bands. The chemical-potential-dependent electrical and thermal conductance exhibit a stepwise increase behavior. Variations in the electronic structures with field strength will be reflected in the electrical and thermal conductance. Prominent peaks, as well as single-shoulder and multi-shoulder structures in the electrical and thermal conductance are predicted when varying the electric field strength. The features of the conductance are found to be strongly dependent on the field strength, the geometry, interlayer interactions and temperature.  相似文献   

2.
The electronic and transport properties of nanotube-ribbon hybrids subject to the influences of a transverse electric field are investigated theoretically. The energy dispersion relations are found to exhibit rich dependence on the nanotube-ribbon interactions, the field strength, and the geometry of the hybrids. The nanotube-ribbon coupling will modify the subband curvature, create additional band-edge states, and change the subband spacing or energy gap. The bandstructures are asymmetric and symmetric about the Fermi energy when the interactions are turned on and off, respectively. The inclusion of a transverse electric field will further alter the bandstructures and lift the degeneracy of the partial flat bands in hybrid (IV). The chemical-potential-dependent electrical and thermal conductance exhibit a stepwise increase behavior. Variations in the electronic structures with field strength will be reflected in the electrical and thermal conductance. Prominent peaks, as well as single-shoulder and multi-shoulder structures in the electrical and thermal conductance are predicted when varying the electric field strength and the nanotube location. The features of the conductance are found to be strongly dependent on the field strength, the geometry and the temperature.  相似文献   

3.
Arafa H. Aly 《中国物理快报》2008,25(12):4399-4401
We present the Peltier coefficient and thermal transport in quantum point contact (QPC), under the influence of external fields and different temperatures. Also we obtain the oscillations of the Peltier coefficient in external fields. Numerical calculations of the Peltier coefficient are performed at different applied voltages, amplitudes and temperatures. The obtained results are consistent with the experimental data in the literature.  相似文献   

4.
Conductance properties in spin field-effect transistors (SFET) are studied by taking into account the Rashba spin-orbit coupling strength, the presence of external magnetic field, the angle between the direction of magnetization and the conductance band mismatch between the ferromagnetic contacts and the channel. It is shown that the conductance of the SFET has high peaks while the value of external magnetic field varies. These peaks become more and more pronounced with the potential barriers strength increasing. The conductance peaks also appear by increasing the strength of the spin-orbit coupling. It is found that the conductance exhibits quantum oscillating behavior when varying the angle between the direction of magnetization in the two contacts. The influence of conductance band mismatch between the contacts and channel is also discussed.  相似文献   

5.
In this work, we use the tight-binding model to study the low-energy electronic properties of telescoping double-walled carbon nanotubes subject to the influences of a transverse electric field and a parallel magnetic field. The state energy and energy spacings are found to oscillate significantly with the overlapping length. External fields would modify the state energies, alter the energy gaps, and destroy the state degeneracy. Complete energy gap modulations can be accomplished either by varying the overlapping length, or by applying an electric field or a magnetic field. The variations of state energies with the external fields will be directly reflected in the density of states. The numbers, heights, and frequencies of the density of states peaks are strongly dependent on the external fields.  相似文献   

6.
We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.  相似文献   

7.
对二甲苯(PX)是化工领域一种非常重要的原料,被广泛地用于香料、医药、油墨和农药等的生产,因此研究PX分子的电子光谱和外场效应,对于它的检测和降解具有十分重要的意义。为研究外电场作用下,PX分子的紫外-可见(UV-Vis)光谱的变化,采用密度泛函理论(density functional theory,DFT)B3LYP方法在6-311++G(d, p)基组水平上,优化了不同外电场(0~0.025 a.u.,0~1.285 6×1010 V·m-1)作用下PX分子的基态几何构型,在此基础上利用含时密度泛函理论(TDDFT)计算了PX分子的UV-Vis吸收光谱,最后对PX分子紫外吸收峰和摩尔吸收系数受外电场作用的的影响规律进行了研究。结果表明:有波长为189 nm、摩尔吸收系数为35 580 L·mol-1·cm-1的强吸收峰,处于E1带,它是环状共轭的三个乙烯键的苯型体系中的π→π*电子跃迁产生的;与苯分子相比,吸收峰出现11 nm的红移:由于两个甲基和苯环形成p-π共轭,苯环的大π键变弱,故PX分子的紫外吸收峰出现红移;当增加了外电场后,最低未占据轨道(LUMO)向外电场的反方向偏移,导致苯环上的电子密度减小,大π键变弱,π→π*跃迁需要的能量降低,电子跃迁产生的波长增大,吸收峰出现显著红移,当外电场增大到0.020 a.u.时,红移已经非常明显;外电场的引入,导致苯环上的电子密度减小,大π键变弱,π→π*跃迁的电子数减少,摩尔吸收系数降低,随着外电场的增强,摩尔吸收系数降低明显,尤其在外电场增强到0.020a.u.后,摩尔吸收系数降低非常显著。这些工作为PX的检测和降解方法研究提供了一定的理论依据,也对其他有机污染物的检测方法和降解机理的研究有启示作用。  相似文献   

8.
Spin-dependent Floquet scattering theory is developed to investigate the photon-assisted spin-polarized electron transport through a semiconductor heterostructure in the presence of an external electric field. Spin-dependent Fano resonances and spin-polarized electron transport through a laser irradiated time-periodic non-magnetic heterostructure in the presence of Dresselhaus spin-orbit interaction and a gate-controlled Rashba spin-orbit interaction are investigated. The electric field due to laser along with the spin-orbit interactions help to get spin-dependent Fano resonances in the conductance, whereas the external bias can be appropriately adjusted to get a near 80% spin-polarized electron transmission through heterostructures. The resultant nature of the Floquet scattering depends on the relative strength of these two electric fields.  相似文献   

9.
The effect of electric field enhancement on damage growth of flat bottom pit and nodule-ejected pit was studied based on the finite difference time domain method and temperature field theory. The electric field enhancement around the edge of damage pits indeed exists and varies from 1.2 to 2.0 times. It is found that damage growth not only depends on the electric field enhancement but also the local absorptive coefficient by temperature field calculation. The results also meet the reported damage growth behavior very well. A conclusion can be drawn that field enhancement and potential defects or new generated defects during former pulses are jointly responsible for the damage growth. In addition, an inference can be drawn from theoretical analysis that the flat bottom pit has been initiated by absorbing defect located at the H-L interfaces, which the peaks of electrical field happen to.  相似文献   

10.
Bismuth layered perovskite structures show interesting physical properties varying as a function of external parameters (temperature, frequency, electric and magnetic fields). When a magnetic ion is incorporated in some of these materials, some of the structures show simultaneous ferroelectricity and ferro/antiferromagnetism. Thus, they exhibit magnetoelectric properties under the influence of an external magnetic field. This paper compares the structural (XRD and SEM) and electrical properties of two eight-layered Aurivillius oxides.  相似文献   

11.
全军  T. C. Au Yeung  邵乐喜 《物理学报》2011,60(8):87201-087201
基于介观体系电子动态输运的自洽理论,讨论了介观结构的动态电导.作为该理论的应用,采用一介观相干平行板电容器模型来进行研究. 结果表明:体系的动态电导与外场频率和体系费米能有关,为一复数且有有限虚部. 当外场频率较小时,动态电导随费米能的变化所呈现的特性和直流情形非常相似,但是随着外场频率的增加,两者差异就变得非常明显,体系动态电导随外场频率的变化呈现一些峰值结构. 在给定体系费米能时,动态电导随着外场频率的变化而产生振荡,并且出现了负的电导虚部,电导虚部的正负表明了体系的电容特性和电感特性. 关键词: 自洽输运理论 相干平行板电容器 电导 介观体系  相似文献   

12.
In experiments on resonant tunneling through a quantum antidot in the quantum Hall (QH) regime, we observe periodic conductance peaks both versus magnetic field and a global gate voltage, i.e., electric field. Each conductance peak can be attributed to tunneling through a quantized antidot-bound state. The fact that the variation of the uniform electric field produces conductance peaks implies that the deficiency of the electrical charge on the antidot is quantized in units of charge of quasiparticles of surrounding QH condensate. The period in magnetic field gives the effective area of the antidot state through which tunneling occurs, the period in electric field (obtained from the global gate voltage) then constitutes a direct measurement of the charge of the tunneling particles. We obtain electron charge C in the integer QH regime, and quasiparticle charge C for the QH state.  相似文献   

13.
We study the thermoelectric effect in a serial-coupled two quantum dots (QDs) device in the Coulomb blockade regime. The electrical conductance, the thermal conductance, the thermopower, and the thermoelectrical figure of merit are calculated by using the Green's function method. It is found that the energy levels of the two dots are split into a series of molecular states, where the electrical and the thermal conductances show resonance peaks. These peaks in the electrical conductance are eliminated by the increase of the temperature, while those in the thermal conductance are enhanced because of the bipolar effect. In quite high temperature regime, the figure of merit has two huge peaks with maximums exceeding 20 in the vicinity of the electron-hole symmetry point. The magnitude of the figure of merit will be suppressed for unequal dots' levels, but is enhanced by the asymmetry of the dot-lead coupling strengths.  相似文献   

14.
采用密度泛函理论,在B3LYP/6-311++G(d,p)基组水平上对分子进行优化,研究了在不同外电场下,哈龙1211分子的键长、体系总能量、偶极矩、能级、能隙、电荷分布和红外光谱的变化规律.计算结果表明,电场方向不同,键长的变化趋势也不同.随着外电场(-0.02 a.u.-0.03 a.u.)的增加,C-Br间的键长随x轴方向电场的增加可能先趋于断裂,而C-Cl间的键长随y轴方向电场的增加可能最先趋于断裂,这对利用外电场解离哈龙1211分子有着重要意义.体系总能量和能隙随着外电场的增加先增大后减小,而偶极矩的变化趋势相反.另外,随着电场的增加,红外光谱的最强峰先发生蓝移再发生红移.  相似文献   

15.
采用密度泛函理论,在B3LYP/6-311++G(d,p)基组水平上对分子进行优化,研究了在不同外电场下,哈龙1211分子的键长、体系总能量、偶极矩、能级、能隙、电荷分布和红外光谱的变化规律。计算结果表明,电场方向不同,键长的变化趋势也不同。随着外电场(-0.02a.u.—0.03a.u.)的增加,C-Br间的键长随x轴方向电场的增加可能先趋于断裂,而C-Cl间的键长随y轴方向的增加可能最先趋于断裂,这对利用外电场解离哈龙1211分子有着重要意义。体系总能量和能隙随着外电场的增加先增大后减小,而偶极矩的变化趋势相反。另外,随着电场的增加,红外光谱的最强峰先发生蓝移再发生红移。  相似文献   

16.
Tunneling effect on the intersubband optical absorption in a GaAs/Al x Ga1- x As quantum well under simultaneous presence of intense non-resonant laser and static electric fields is theoretically investigated. Based on the shooting method the quasi-stationary energy levels and their corresponding linewidths are obtained. By considering the joint action of the two external fields the linear absorption coefficient is calculated by means of Fermi’s golden rule and taking into account the intersubband relaxation. We found that: (i) the linewidth broadening due to the electron tunneling has an appreciable effect on the absorption spectrum; (ii) a constant relaxation time adopted in the previous studies could not be justified even for moderate electric fields, especially in the laser dressed wells. Our model predicts that the number of absorption peaks can be controlled by the external applied fields. While in the high-electric fields the excited states become unbounded due to a significant tunneling of the electrons, for high laser intensities and low/moderate electric fields the absorption spectrum has a richer structure due to the laser-generated resonant states. The possibility of tuning the resonant absorption energies by using the combined effects of the static electric field and the THz coherent radiation field can be useful in designing new optoelectronic devices.  相似文献   

17.
Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii–Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.  相似文献   

18.
We present a formalism for calculating the absorption coefficient of a pair of coaxial tubules. A spatially nonlocal, dynamical self-consistent field theory is obtained by calculating the electrostatic potential produced by the charge density fluctuations as well as the external electric field. There are peaks in the absorption spectrum arising from plasma excitations corresponding either to plasmon or particle-hole modes. In this Letter, we numerically calculate the plasmon contribution to the absorption spectrum when an external electric field is applied. The number of peaks depends on the radius of the inner as well as outer tubule. The height of each peak is determined by the plasmon wavelength and energy. For a chosen wave number, the most energetic plasmon has the highest peak corresponding to the largest oscillator strength of the excited modes. Some of the low-frequency plasmon modes have such weak coupling to an external electric field that they are not seen on the same scale as the modes with larger energy of excitation. We plot the peak positions of the plasmon excitations for a pair of coaxial tubules. The coupled modes on the two tubules are split by the Coulomb interaction. The energies of the two highest plasmon branches increase with the radius of the outer tubule. On the contrary, the lowest modes decrease in energy as this radius is increased. No effects due to inter-tubule hopping are included in these calculations.  相似文献   

19.
M. Cristea  C. R. Truşcă 《哲学杂志》2013,93(35):3343-3360
Abstract

The effects of the hydrogenic impurity on the electron-related non-linear optical processes in a InAs/GaAs dome-shaped quantum dot with a wetting layer under applied electric fields are studied within the density-matrix formalism. The one-electron energy levels and wave functions are calculated using the effective mass approximation and the finite element method. The non-linear optical absorption, relative refractive index change and non-linear optical rectification associated with interlevel transitions are calculated under a strong probe field excitation for both in-plane and z-polarisation of the incident light. According to our results as the electric field increases the absorption and dispersion peaks decrease and exhibit red shift. Hydrogenic impurity located at the origin induces a blue shift in the optical responses. For the optical absorption coefficient the peaks magnitude is enhanced by the impurity presence independent of the electric field strengths, whereas the non-linear optical rectification is larger in the case with impurity only for zero applied electric field.  相似文献   

20.
The Keldysh nonequilibrium Green's function method is utilized to theoretically study spin-polarized transport through a graphene spin valve irradiated by a monochromatic laser field. It is found that the bias dependence of the differential conductance exhibits successive peaks corresponding to the resonant tunneling through the photon-assisted sidebands. The multi-photon processes originate from the combined effects of the radiation field and the graphene tunneling properties, and are shown to be substantially suppressed in a graphene spin valve which results in a decrease of the differential conductance for a high bias voltage. We also discuss the appearance of a dynamical gap around zero bias due to the radiation field. The gap width can be tuned by changing the radiation electric field strength and the frequency. This leads to a shift of the resonant peaks in the differential conductance. We also demonstrate numerically the dependences of the radiation and spin valve effects on the parameters of the external fields and those of the electrodes. We find that the combined effects of the radiation field, the graphene and the spin valve properties bring about an oscillatory behavior in the tunnel magnetoresistance, and this oscillatory amplitude can be changed by scanning the radiation field strength and/or the frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号