首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three linear isoconversional methods (Friedman, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose) and the invariant kinetic parameters (IKP) method were used in order to examine the kinetics of the nonisothermal decomposition of a sodium bicarbonate (NaHCO3). The objective of the paper is to show the usefulness of the IKP method to determine both the kinetic parameters and the kinetic model of the investigated process. The activation energy (Ea) value obtained by the IKP method is in good agreement with the values obtained by isoconversional methods. The IKP method associated with the criterion of coincidence of kinetic parameters for all heating rates led us to the following kinetic triplet: Ea = 95.5 kJ mol?1, A = 2.65 × 1010 min?1, and conversion function f(α) = (1 ? α) (first‐order reaction model, F1). © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 462–471, 2007  相似文献   

2.
Mathematical analysis has shown that invariant kinetic parameters (IKP) correspond to the real kinetic curve even in the case when the equation prescribing this curve is not used for the calculation of parameters. It has been proved that IKP values coincide with those obtained for isothermal conditions. The theory is verified by calculations using model experimental data. The IKP stability to random experimental errors is studied.  相似文献   

3.
The paper presents a non-isothermal kinetic study of the decomposition of Zn acetate-based gel precursors for ZnO thin films, based on the thermogravimetric (TG) data. The evaluation of the dependence of the activation energy (E) on the mass loss (Δm) using the isoconversional methods (Friedman (FR), Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) has been presented in a previous paper. It was obtained that the sample dried at 125°C for 8 h exhibits the activation energy independent on the heating rate for the second decomposition step. In this paper the invariant kinetic parameter (IKP) method is used for evaluating the invariant activation parameters, which were used for numerically evaluation of the function of conversion. The value of the invariant activation energy is in a good agreement with those determined by isoconversional methods. In order to determine the kinetic model, IKP method was associated with the criterion of coincidence of the kinetic parameters for all heating rates. Finally, the following kinetic triplet was obtained: E=91.7 (±0.1) kJ mol−1, lnA(s−1)=16.174 (±0.020) and F1 kinetic model.  相似文献   

4.
Summary Gun propellants are per definition instable substances. During their lifetime a slow decomposition process is going-on. During this decomposition process the heat that is generated accelerates the process, which could result to an unsafe situation, or an unexpected explosion of the material. The temperature to initiate the explosion of a propellant is of importance for the storage conditions of such a substance. The method used so far to evaluate this temperature is based on an extrapolation of the Kissinger equation at zero heating rate. A new proposal is the use of the invariant kinetic parameters (IKP) method to determine the iso-kinetic temperature and extrapolating it to zero heating rate as an alternative method. The results are discussed for some examples.  相似文献   

5.
Two integral isoconversional methods (Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose) and the invariant kinetic parameters method (IKP) were used in order to examine the kinetics of the non-isothermal crystallisation of a silica-soda-lead glass. The objective of the paper is to show the usefulness of the IKP method to determine both the activation parameters and the kinetic model of the investigated process. Thismethod associated with the criterion of coincidence of kinetic parameters for all heating rates and some procedures of the evaluation of the parameter from Johnson–Mehl–Avrami–Erofeev–Kolmogorov (JMAEK) equation led us to the following kinetic triplet: activation energy, E=170.5±2.5 kJ mol–1 , pre-exponential factor, A=1.178±0.350·10 10 min–1 and JMAEK model (A m) m=1.5.  相似文献   

6.
7.
This article presents, firstly, a short review of methods for evaluating kinetic parameters of solid state reactions and a critical analysis of the isoconversional principle of model free methods. It shows theoretically that the activation energy for complex reactions is not only a function of the reaction degree but also of heating programs, and points out that any method that attempts to extract the dependences of activation energy on conversion degree without considering the dependences of heating programs is problematic. Then an analysis is given of the invariant kinetic parameters (IKP) method and recommends an incremental version of it. Based on the incremental IKP method and model free method, a comprehensive method is proposed that predicts the degree of the dependences of activation energy on heating programs, selects reliable values of activation energy and extracts the values of variable pre‐exponential factor. This comprehensive method is tested using both simulation data and experimental data, the results of which show it can not only give reliable values of kinetic parameters but also be helpful in explaining inconsistencies of kinetic results in solid state reactions. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The non-isothermal kinetic parameters corresponding to the decomposition of 4-[(4-chlorobenzyl)oxy]-4’-nitro-azobenzene were evaluated. The kinetic analysis was performed by means of different multi-heating rates methods: isoconversional (‘model-free’) methods (Flynn–Wall–Ozawa) and invariant kinetic parameters method (IKP) associated with the criterion of the independence of activation parameters on the heating rate. The values of the obtained non-isothermal kinetic parameters are in satisfactory agreement.  相似文献   

9.
A scheme for a kinetic study of the hydriding reactions of metals is presented. This scheme is based on a combined kinetic and metallographic study of hydride formation in metallic samples with well defined geometrical shapes.Since the directly measured kinetic quantity (which is the overall reaction rate) depends also on parameters which are not related to the intrinsic nature of the reaction (i.e., on the geometrical shape of the sample and on the topochemistry of the product development) an intrinsic kinetic parameter IKP, should be evaluated in order to characterize uniquely a given reacting system. The choices for these intrinsic parameters and the methods for their evaluation are presented.Different theoretical models for the hydriding reactions are summarized and the predicted pressure-temperature dependence of the IKP's are discussed in light of these models. In some cases the comparison between the experimental and theoretical pressure-temperature behavior may elucidate the mechanisms controlling the respective reactions.  相似文献   

10.
The isoconversional method suggested by Friedman and the invariant kinetic parameters method (IKP) were used in order to examine the kinetics of the nonisothermal crystallization of (GeS2)0.3(Sb2S3)0.7. The objective of the paper is to show the usefulness of the IKP method both for determining the activation parameters as well as the model of the investigated process. It was shown that the kinetic triplet [(E, A, f(α), where E is the activation energy, A is the preexponential factor, and f(α) is the differential function of conversion], which results through the application of the IKP method, depends on the set of kinetic models considered. For different sets of kinetic models, proportional values of f(α) are obtained. A criterion for the selection of this set, the use of which lead to the true kinetic triplet corresponding to the analyzed process (E = 163.2 kJ mol?1; A = 2.47 × 1012 min?1 and the Avrami‐Erofeev model, Am, for m = 2.5–2.6 was suggested. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 309–315, 2004  相似文献   

11.
Thermal analysis of 4-[(4-chlorobenzyl)oxy]-4′-chloro-azobenzene dye, exhibiting liquid crystalline properties, was performed in dynamic air atmosphere. The compound behavior was investigated using TG, DTG, DTA and DSC techniques, under non-isothermal linear regime. The evolved gases were analyzed by FTIR spectroscopy. Kinetic parameters of the first decomposition step were obtained by means of multi-heating rates methods, such as isoconversioanl methods, IKP method and Perez-Maqueda et al. criterion.  相似文献   

12.
Java classes have been created for organizing chemical information and solving generalized equilibrium problems. An object-oriented approach is employed for the organization and manipulation of chemical information. Classes have been created to represent chemical species, phases, and chemical reactions. The representation of the entire chemical system is encapsulated in the ChemSystem class. The Equilibria class provides methods for analyzing a chemical system, as described by a ChemSystem object, and determining the amounts of each species in the system at equilibrium. The ChemEquilibria applet has been created to facilitate deployment of this software over the World Wide Web.  相似文献   

13.
Jia Li  Wei Zheng  Li Li  Yufeng Zheng  X. Lou   《Thermochimica Acta》2009,493(1-2):90-95
Thermal degradation behaviors of a composite constituted by poly(l-lactide) (PLA) and hydroxyapatite nanoparticle that was surface-grafted with l-lactic acid oligomer (g-HA) in a nitrogen atmosphere were studied using thermogravimetric analysis (TGA) and compared with PLA. The kinetic models and parameters of the thermal degradation of PLA and the g-HA/PLA composite were evaluated by the invariant kinetic parameters (IKP) method and Flynn–Wall–Ozawa (FWO) method based on a set of TGA data obtained at different heating rates. It was shown that the conversion functions calculated by means of the IKP method depend on a set of kinetic models. The g-HA particle slowed down the thermal degradation of PLA polymer matrix.  相似文献   

14.
15.
16.
17.
18.
19.
The following problems concerning the apparent compensation effect (CE) (lnA=a+bE, where A is the pre-exponential factor, E is the activation energy, a and b are CE parameters) due to the change of the conversion function and on which the invariant kinetic parameters method (IKP method) is based, are discussed: (1) the explanation of this kind of CE; (2) the choice of the set of conversion functions that checks CE relationship; (3) the dependencies of CE parameters on the heating rate and the temperature corresponding to the maximum reaction rate. Using the condition of maximum of the reaction rate suggested by Kissinger (Kissinger law), it is pointed out that, for a certain heating rate, the CE relationship is checked only for reaction order (Fn) and Avrami-Erofeev (An) kinetic models, and not for diffusion kinetic models (Dn). Consequently, IKP method, which is based on the supercorrelation relationship between CE parameters, can be applied only for the set Fn+ An of kinetic models. The dependencies of a and b parameters on the heating rate and T m (temperature corresponding to maximum reaction rate) are derived. The theoretical results are discussed and checked for (a) TG simulated data for a single first order reaction; (b) TG data for PVC degradation; (b) the dehydration of CaC2O4·H2O.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号