首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We study valid inequalities for optimization models that contain both binary indicator variables and separable concave constraints. These models reduce to a mixed-integer linear program (MILP) when the concave constraints are ignored, or to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms designed to solve these problems to global optimality, cutting planes to strengthen the relaxation are traditionally obtained using valid inequalities for the MILP only. We propose a technique to obtain valid inequalities that are based on both the MILP constraints and the concave constraints. We begin by characterizing the convex hull of a four-dimensional set consisting of a single binary indicator variable, a single concave constraint, and two linear inequalities. Using this analysis, we demonstrate how valid inequalities for the single node flow set and for the lot-sizing polyhedron can be “tilted” to give valid inequalities that also account for separable concave functions of the arc flows. We present computational results demonstrating the utility of the new inequalities for nonlinear transportation problems and for lot-sizing problems with concave costs. To our knowledge, this is one of the first works that simultaneously convexifies both nonconvex functions and binary variables to strengthen the relaxations of practical mixed-integer nonlinear programs.  相似文献   

3.
This paper studies the polyhedral structure of dynamic fixed-charge problems that have nested relationships constraining the flow or activity variables. Constraints of this type might typically arise in hierarchical or multi-period models and capacitated lot-sizing problems, but might also be induced among choices of key variables via an LP-based post-optimality analysis. We characterize several classes of valid inequalities and inductively derive convex hull representations in a higher dimensional space using lifting constructs based on the Reformulation-Linearization Technique. Relationships with certain known classes of valid inequalities for single item capacitated lot-sizing problems are also identified.  相似文献   

4.
5.
 A dynamic knapsack set is a natural generalization of the 0-1 knapsack set with a continuous variable studied recently. For dynamic knapsack sets a large family of facet-defining inequalities, called dynamic knapsack inequalities, are derived by fixing variables to one and then lifting. Surprisingly such inequalities have the simultaneous lifting property, and for small instances provide a significant proportion of all the facet-defining inequalities. We then consider single-item capacitated lot-sizing problems, and propose the joint study of three related sets. The first models the discrete lot-sizing problem, the second the continuous lot-sizing problem with Wagner-Whitin costs, and the third the continuous lot-sizing problem with arbitrary costs. The first set that arises is precisely a dynamic knapsack set, the second an intersection of dynamic knapsack sets, and the unrestricted problem can be viewed as both a relaxation and a restriction of the second. It follows that the dynamic knapsack inequalities and their generalizations provide strong valid inequalities for all three sets. Some limited computation results are reported as an initial test of the effectiveness of these inequalities on capacitated lot-sizing problems. Received: March 28, 2001 / Accepted: November 9, 2001 Published online: September 27, 2002 RID="★" ID="★" Research carried out with financial support of the project TMR-DONET nr. ERB FMRX–CT98–0202 of the European Union. Present address: Electrabel, Louvain-la-Neuve, B-1348 Belgium. Present address: Electrabel, Louvain-la-Neuve, B-1348 Belgium. Key words. knapsack sets – valid inequalities – simultaneous lifting – lot-sizing – Wagner-Whitin costs  相似文献   

6.
The partition problem   总被引:1,自引:0,他引:1  
In this paper we describe several forms of thek-partition problem and give integer programming formulations of each case. The dimension of the associated polytopes and some basic facets are identified. We also give several valid and facet defining inequalities for each of the polytopes.Partial Support from NSF Grants DMS 8606188 and ECS 8800281 is gratefully acknowledged.  相似文献   

7.
We consider two formulations of a stochastic uncapacitated lot-sizing problem. We show that by adding (?,S) inequalities to the one with the smaller number of variables, both formulations give the same LP bound. Then we show that for two-period problems, adding another class of inequalities gives the convex hull of integral solutions.  相似文献   

8.
9.
In the fixed-charge transportation problem, the goal is to optimally transport goods from depots to clients when there is a fixed cost associated to transportation or, equivalently, to opening an arc in the underlying bipartite graph. We further motivate its study by showing that it is both a special case and a strong relaxation of the big-bucket multi-item lot-sizing problem, and a generalization of a simple variant of the single-node flow set. This paper is essentially a polyhedral analysis of the polynomially solvable special case in which the associated bipartite graph is a path. We give a $\mathcal O (n^3)$ -time optimization algorithm and a $\mathcal O (n^2)$ -size linear programming extended formulation. We describe a new class of inequalities that we call “path-modular” inequalities. We give two distinct proofs of their validity. The first one is direct and crucially relies on sub- and super-modularity of an associated set function. The second proof is by showing that the projection of the extended linear programming formulations onto the original variable space yields exactly the polyhedron described by the path-modular inequalities. Thus we also show that these inequalities suffice to describe the convex hull of the set of feasible solutions.  相似文献   

10.
This paper addresses a multi-stage stochastic integer programming formulation of the uncapacitated lot-sizing problem under uncertainty. We show that the classical (ℓ,S) inequalities for the deterministic lot-sizing polytope are also valid for the stochastic lot-sizing polytope. We then extend the (ℓ,S) inequalities to a general class of valid inequalities, called the inequalities, and we establish necessary and sufficient conditions which guarantee that the inequalities are facet-defining. A separation heuristic for inequalities is developed and incorporated into a branch-and-cut algorithm. A computational study verifies the usefulness of the inequalities as cuts. This research has been supported in part by the National Science Foundation under Award number DMII-0121495.  相似文献   

11.
We give new facets and valid inequalities for the separable piecewise linear optimization (SPLO) knapsack polytope. We also extend the inequalities to the case in which some of the variables are semi-continuous. Finally, we give computational results that demonstrate their efficiency in solving difficult instances of SPLO and SPLO with semi-continuous constraints.  相似文献   

12.
We consider the multi-item discrete lot-sizing and scheduling problem on identical parallel machines. Based on the fact that the machines are identical, we introduce aggregate integer variables instead of individual variables for each machine. For the problem with start-up costs, we show that the inequalities based on a unit flow formulation for each machine can be replaced by a single integer flow formulation without any change in the resulting LP bound. For the resulting integer lot-sizing with start-ups subproblem, we show how inequalities for the unit demand case can be generalized and how an approximate version of the extended formulation of Eppen and Martin can be constructed. The results of some computational experiments carried out to compare the effectiveness of the various mixed-integer programming formulations are presented.  相似文献   

13.
A family of valid linear inequalities for uncapacitated fixed charge networks is given. As special cases this family includes the linear inequalities describing the convex hull of the single-item uncapacitated lot-sizing problem and the variable upper bounds which are typically used in location and distribution planning problems. Various special cases, where the separation problem for the family of inequalities is solvable in polynomial time, are investigated.  相似文献   

14.
Solving multicommodity capacitated network design problems is a hard task that requires the use of several strategies like relaxing some constraints and strengthening the model with valid inequalities. In this paper, we compare three sets of inequalities that have been widely used in this context: Benders, metric and cutset inequalities. We show that Benders inequalities associated to extreme rays are metric inequalities. We also show how to strengthen Benders inequalities associated to non-extreme rays to obtain metric inequalities. We show that cutset inequalities are Benders inequalities, but not necessarily metric inequalities. We give a necessary and sufficient condition for a cutset inequality to be a metric inequality. Computational experiments show the effectiveness of strengthening Benders and cutset inequalities to obtain metric inequalities.  相似文献   

15.
The mixing set with a knapsack constraint arises in deterministic equivalent of chance-constrained programming problems with finite discrete distributions. We first consider the case that the chance-constrained program has equal probabilities for each scenario. We study the resulting mixing set with a cardinality constraint and propose facet-defining inequalities that subsume known explicit inequalities for this set. We extend these inequalities to obtain valid inequalities for the mixing set with a knapsack constraint. In addition, we propose a compact extended reformulation (with polynomial number of variables and constraints) that characterizes a linear programming equivalent of a single chance constraint with equal scenario probabilities. We introduce a blending procedure to find valid inequalities for intersection of multiple mixing sets. We propose a polynomial-size extended formulation for the intersection of multiple mixing sets with a knapsack constraint that is stronger than the original mixing formulation. We also give a compact extended linear program for the intersection of multiple mixing sets and a cardinality constraint for a special case. We illustrate the effectiveness of the proposed inequalities in our computational experiments with probabilistic lot-sizing problems.  相似文献   

16.
The lot-sizing polytope is a fundamental structure contained in many practical production planning problems. Here we study this polytope and identify facet–defining inequalities that cut off all fractional extreme points of its linear programming relaxation, as well as liftings from those facets. We give a polynomial–time combinatorial separation algorithm for the inequalities when capacities are constant. We also report computational experiments on solving the lot–sizing problem with varying cost and capacity characteristics.Supported, in part, by NSF Grants 0070127 and 0218265, and a grant from ILOG, Inc.  相似文献   

17.
We consider a mixed integer model for multi-item single machine production planning, incorporating both start-up costs and machine capacity. The single-item version of this model is studied from the polyhedral point of view and several families of valid inequalities are derived. For some of these inequalities, we give necessary and sufficient facet inducing conditions, and efficient separation algorithms. We use these inequalities in a cutting plane/branch and bound procedure. A set of real life based problems with 5 items and up to 36 periods is solved to optimality.  相似文献   

18.
The goal here is to survey some recent and not so recent work that can be used to improve problem formulations either by a priori reformulation, or by the addition of valid inequalities. The main topic examined is the handling of changeovers, both sequence-independent and -dependent, in production planning and machine sequencing, with in the background the question of how to model time. We first present results for lot-sizing problems, in particular the interval submodular inequalities of Constantino that provide insight into the structure of single item problems with capacities and start-ups, and a unit flow formulation of Karmarkar and Schrage that is effective in modelling changeovers. Then we present various extensions and an application to machine sequencing with the unit flow formulation. We terminate with brief sections on the use of dynamic programming and of time-indexed formulations, which provide two alternative approaches for the treatment of time.  相似文献   

19.
Stochastic dominance relations are well studied in statistics, decision theory and economics. Recently, there has been significant interest in introducing dominance relations into stochastic optimization problems as constraints. In the discrete case, stochastic optimization models involving second order stochastic dominance constraints can be solved by linear programming. However, problems involving first order stochastic dominance constraints are potentially hard due to the non-convexity of the associated feasible regions. In this paper we consider a mixed 0–1 linear programming formulation of a discrete first order constrained optimization model and present a relaxation based on second order constraints. We derive some valid inequalities and restrictions by employing the probabilistic structure of the problem. We also generate cuts that are valid inequalities for the disjunctive relaxations arising from the underlying combinatorial structure of the problem by applying the lift-and-project procedure. We describe three heuristic algorithms to construct feasible solutions, based on conditional second order constraints, variable fixing, and conditional value at risk. Finally, we present numerical results for several instances of a real world portfolio optimization problem. This research was supported by the NSF awards DMS-0603728 and DMI-0354678.  相似文献   

20.
 We examine progress over the last fifteen years in finding strong valid inequalities and tight extended formulations for simple mixed integer sets lying both on the ``easy' and ``hard' sides of the complexity frontier. Most progress has been made in studying sets arising from knapsack and single node flow sets, and a variety of sets motivated by different lot-sizing models. We conclude by citing briefly some of the more intriguing new avenues of research. Received: January 15, 2003 / Accepted: April 10, 2003 Published online: May 28, 2003 Key words. mixed integer programming – strong valid inequalities – convex hull – extended formulations – single node flow sets – lot-sizing This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors. Research carried out with financial support of the project TMR-DONET nr. ERB FMRX–CT98–0202 of the European Union.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号